Plasma Physics Reports

, Volume 45, Issue 4, pp 410–413 | Cite as

Optimization of a Multidischarge Actuator System

  • S. V. NebogatkinEmail author
  • I. E. Rebrov
  • V. Yu. Khomich
  • V. A. Yamshchikov


A multidischarge actuator system (MAS) based on an improved three-electrode scheme with a screening electrode has been studied. The geometrical and physical parameters of the MAS are optimized to increase the velocity and energy efficiency of the generated airflow. The dependences of the airflow velocity at the output of the MAS on the frequency, voltage amplitude, and average supply power are experimentally determined. The maximum velocity is measured as a function of the total thickness of the dielectric substrate.



This work was supported by the Russian Foundation for Basic Research, project no. 16-38-60194.


  1. 1.
    R. J. Roth, Phys. Plasmas 10, 2117 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    R. J. Roth and X. Dai, in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibition, Reno, NV, 2006, p. 1203.Google Scholar
  3. 3.
    S. V. Nebogatkin, I. E. Rebrov, V. Y. Khomich, and V. A. Yamshchikov, XLIII International Zvenigorod Conference on Plasma Physics and Controlled Fusion, Zvenigorod, 2016, Book of Abstracts, p. 248.Google Scholar
  4. 4.
    S. I. Moshkunov, S. V. Nebogatkin, I. E. Rebrov, V. Y. Khomich, and V. A. Yamshchikov, Plasma Phys. Rep. 38, 1040 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    S. V. Nebogatkin, I. E. Rebrov, V. Y. Khomich, and V. A. Yamshchikov, Usp. Prikl. Fiz. 2, 595 (2014).Google Scholar
  6. 6.
    E. Moreau, J. Phys. D 40, 605 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    J. R. Roth, D. M. Sherman, and S. P. Wilkinson, AIAA J. 38, 1166 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    B. S. Aleshin, V. Y. Khomich, and S. L. Chernyshev, Doklady Phys. 61, 601 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    S. L. Chernyshev, M. D. Gamirullin, A. P. Kuryachii, V. M. Litvinov, S. V. Manuilovich, D. A. Rusyanov, V. Y. Khomich, S. I. Moshkunov, I. E. Rebrov, and V. A. Yamshchikov, Aerospace Sci. Technol. 59, 155, (2016).CrossRefGoogle Scholar
  10. 10.
    B. S. Aleshin, A. P. Kuryachii, S. L. Chernyshev, I. E. Rebrov, V. Y. Khomich, and V. A. Yamshchikov, Tech. Phys. Lett. 43, 64 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    V. Y. Khomich and V. A. Yamshchikov, Phys. Usp. 60, 608 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    M. D. Gamirullin, A. P. Kuryachii, I. E. Rebrov, V. Y. Khomich, S. L. Chernyshev, and V. A. Yamshchikov, Prikl. Fiz., No. 5, 95 (2015).Google Scholar
  13. 13.
    M. V. Malashin, S. I. Moshkunov, I. E. Rebrov, V. Y. Khomich, and E. A. Shershunova, Instrum. Exp. Tech. 57, 140 (2014).CrossRefGoogle Scholar
  14. 14.
    M. V. Malashin, S. I. Moshkunov, V. Y. Khomich, and E. A. Shershunova, Instrum. Exp. Tech. 59, 71 (2016).Google Scholar
  15. 15.
    J. Kriegseis, S. Grundmann, and C. Tropea, J. Appl. Phys. 110, 013305 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    D. E. Ashpis, M. C. Laun, and E. L. Griebeler, in Proceedings of the 50th Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, 2012, AIAA Paper 2012-0823.Google Scholar
  17. 17.
    H. Jiang, T. Shao, C. Zhang, P. Yan, Z. Niu, and Y. Zhou, in Proceedings of the 2013 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Chenzhen, 2013, p. 1030.Google Scholar
  18. 18.
    J. Pons, E. Moreau, and G. Touchard, in Proceedings of the XXVIII International Conference on Phenomena in Ionized Gases, Prague, 2007, p. 953.Google Scholar
  19. 19.
    M. D. Gamirullin, A. P. Kuryachii, V. M. Litvinov, and S. L. Chernyshev, Uchen. Zapiski TsAGI 45 (6), 28 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. V. Nebogatkin
    • 1
    Email author
  • I. E. Rebrov
    • 1
  • V. Yu. Khomich
    • 1
  • V. A. Yamshchikov
    • 1
  1. 1.Institute for Electrophysics and Electric Power, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations