Advertisement

Plasma Physics Reports

, Volume 45, Issue 4, pp 406–409 | Cite as

Calculations of Thermodynamic Parameters of Charged Microparticle Structures in Electrodynamic Traps

  • D. S. LapitskiiEmail author
  • V. S. Filinov
  • L. M. Vasilyak
  • R. A. Syrovatka
  • L. V. Deputatova
  • V. I. Vladimirov
  • V. Ya. Pecherkin
APPLIED PHYSICS
  • 15 Downloads

Abstract

In the framework of the statistical theory of liquids, the thermodynamic parameters of a strongly nonideal Coulomb microparticle structure confined in a Paul linear trap in atmospheric-pressure air are calculated using the Brownian dynamics method. The Coulomb potential of interparticle interaction and the calculated pair correlation functions of the Coulomb structure are used in calculations. The average interparticle interaction parameter (the coupling parameter Γ), the internal energy of the Coulomb structure, and the pressure it imposes on the trap are calculated. It has been found that the parameters mentioned above decrease with increasing size and charge of particles due to an increase in the average equilibrium interparticle distance in the electrodynamic trap. As the system approaches a steady state, the energy and pressure also decrease due to an increase in the average interparticle distance caused by a partial ordering of the Coulomb system of particles.

Notes

FUNDING

This work was supported by the Russian Foundation for Basic Research (project no. 15-08-02835).

REFERENCES

  1. 1.
    N. P. Spyros, S. W. Anthony, and S. S. John, J. Phys. Chem. 99, 9646 (1995).CrossRefGoogle Scholar
  2. 2.
    H. S. John and N. P. Spyros, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, New York, 2006).Google Scholar
  3. 3.
    T. D. Bruce, Annu. Rev. Astron. Astrophys. 41, 241 (2003).CrossRefGoogle Scholar
  4. 4.
    P. Kulkarni, A. B. Paul, and W. Klaus, Aerosol Measurement: Principles, Techniques and Applications (Wiley, New York, 2011).CrossRefGoogle Scholar
  5. 5.
    D. S. Lapitsky, V. S. Filinov, L. M. Vasilyak, R. A. Syrovatka, L. V. Deputatova, V. I. Vladimirov, and V. Ya. Pecherkin, Europhys. Lett. 110, 15001 (2015).CrossRefGoogle Scholar
  6. 6.
    D. S. Lapitsky, R. A. Syrovatka, L. M. Vasilyak, V. S. Filinov, L. V. Deputatova, V. I. Vladimirov, and V. Ya. Pecherkin, Prikl. Fiz., No. 6, 88 (2015).Google Scholar
  7. 7.
    D. S. Lapitsky, J. Phys. Conf. Ser. 747, 012037 (2016).CrossRefGoogle Scholar
  8. 8.
    D. S. Lapitsky, V. Ya. Pecherkin, V. S. Filinov, L. M. Vasilyak, V. I. Vladimirov, L. V. Deputatova, and R. A. Syrovatka, RF Patent No. 2612292, June 3, 2017.Google Scholar
  9. 9.
    D. S. Lapitsky, V. S. Filinov, L. V. Deputatova, L. M. Vasilyak, V. I. Vladimirov, and V. Ya. Pecherkin, Contrib. Plasma Phys. 53, 450 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    L. M. Vasilyak, V. I. Vladimirov, L. V. Deputatova., D. S. Lapitsky, V. I. Molotkov, V. Ya. Pecherkin, V. S. Filinov, and V. E. Fortov, New J. Phys. 15, 043047 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    D. S. Lapitsky, V. S. Filinov, L. V. Deputatova, L. M. Vasilyak, V. I. Vladimirov, and V. Ya. Pecherkin, High Temp. 53, 1 (2015).CrossRefGoogle Scholar
  12. 12.
    D. S. Lapitsky, Prikl. Fiz., No. 6, 21 (2015).Google Scholar
  13. 13.
    I. Z. Fisher, Usp. Fiz. Nauk 51, 71 (1953).CrossRefGoogle Scholar
  14. 14.
    P. Tsilingiris, Energy Conv. Manag. 49, 1098 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. S. Lapitskii
    • 1
    Email author
  • V. S. Filinov
    • 1
  • L. M. Vasilyak
    • 1
  • R. A. Syrovatka
    • 1
  • L. V. Deputatova
    • 1
  • V. I. Vladimirov
    • 1
  • V. Ya. Pecherkin
    • 1
  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia

Personalised recommendations