Plasma Physics Reports

, Volume 45, Issue 4, pp 397–400 | Cite as

Effect of Nitrogen Additive on Inhomogeneous Microwave Discharge in Hydrogen at Reduced Pressures

  • Yu. A. LebedevEmail author
  • A. V. Tatarinov
  • I. L. Epstein


The effect of a small nitrogen additive on a microwave discharge in hydrogen ignited near the antenna at a pressure of 1 Torr was studied by emission spectroscopy and visualization methods. It is shown that, in the presence of a nitrogen additive, the discharge shifts along the antenna toward the generator and the intensities of hydrogen spectral lines and bands near the antenna decrease. These results are qualitatively explained on the basis of the earlier 1D simulation of the discharge. The changes in the discharge parameters are caused by the replacement of the light \({\text{H}}_{3}^{ + }\) ion in hydrogen plasma with the heavy N2H+ ion in a discharge in a hydrogen–nitrogen mixture. As a result, the rate of diffusive particle loss decreases, so that the discharge can exist in regions with a weaker microwave field.



This work was carried out within the State Program of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.


  1. 1.
    Yu. A. Lebedev, I. L. Epstein, A. V. Tatarinov, and V. A. Shakhatov, J. Phys. Conf. Ser. 44, 30 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    Yu. A. Lebedev, M. V. Mokeev, A. V. Tatarinov, V. A. Shakhatov, and I. L. Epstein, J. Phys. D 41, 194001 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    Yu. A. Lebedev, I. L. Epstein, A. V. Tatarinov, and V. A. Shakhatov, J. Phys. Conf. Ser. 207, 012002 (2010).CrossRefGoogle Scholar
  4. 4.
    Yu. A. Lebedev, A. V. Tatarinov, A. Yu. Titov, I. L. Epstein, G. V. Krashevskaya, and E. V. Yusupova, J. Phys. D 47, 335203 (2014).CrossRefGoogle Scholar
  5. 5.
    J. Jovovich, I. L. Epstein, N. Konjevich, Yu. A. Lebedev, N. M. Sisovic, and A. V. Tatrinov, Plasma Chem. Plasma Process. 32, 1093 (2012).CrossRefGoogle Scholar
  6. 6.
    Yu. A. Lebedev, T. B. Mavlyudov, V. A. Shakhatov, and I. L. Epshtein, High Temp. 48, 315 (2010).CrossRefGoogle Scholar
  7. 7.
    Yu. A. Lebedev and A. V. Tatarinov, Plasma Sources Sci. Technol. 13, 1 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    Yu. B. Golubovskii and V. M. Telezhko, Sov. Phys. Tech. Phys. 29, 727 (1984).Google Scholar
  9. 9.
    S. D. Popa, L. Hochard, and A. Ricard, J. Phys. III France 7, 1331 (1997).CrossRefGoogle Scholar
  10. 10.
    A. R. de Souza, M. Digiacomo, J. L. R. Muzart, J. Nahorny, and A. Ricard, Eur. Phys. J. Appl. Phys. 5, 185 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    K. Rusnak and J. Vicek, J. Phys. D 26, 585 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    V. Melnik, D. Wolanski, E. Bugiel, A. Goryachko, S. Chernjavski, and D. Krüger, Mater. Sci. Eng. A 102, 358 (2003).CrossRefGoogle Scholar
  13. 13.
    H. Nagai, M. Hiramatsu, M. Hori, and T. Goto, J. Appl. Phys. 94, 1362 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    H. Martinez and F. B. Yousif, Eur. Phys. J. D 46, 493 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    A. Garscadden and R. Nagpal, Plasma Sources Sci. Technol. 4, 268 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    E. Carrasco, M. Jiménez-Redondo, I. Tanarro, and V. Herrero, Phys. Chem. Chem. Phys. 13, 19561 (2011).CrossRefGoogle Scholar
  17. 17.
    M. Sode, W. Jacob, T. Schwarz-Selinger, and H. Kersten, J. Appl. Phys. 117, 083303 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    Yu. A. Lebedev, A. V. Tatarinov, and I. L. Epstein, J. Phys. Conf. Ser. 927, 012029 (2017).CrossRefGoogle Scholar
  19. 19.
    Yu. A. Lebedev, I. L. Epshtein, and E. V. Yusupova, High Temp. 52, 150 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. A. Lebedev
    • 1
    Email author
  • A. V. Tatarinov
    • 1
  • I. L. Epstein
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences (TIPS RAS)MoscowRussia

Personalised recommendations