Advertisement

Plasma Physics Reports

, Volume 45, Issue 4, pp 387–396 | Cite as

Beaded Discharges Formed under Pulsed Breakdowns of Air and Nitrogen

  • D. V. Beloplotov
  • A. M. Boichenko
  • V. F. TarasenkoEmail author
LOW-TEMPERATURE PLASMA
  • 21 Downloads

Abstract

The mode of a pulsed discharge in a nonuniform electric field is investigated at which bright plasma bunches with a beaded structure are generated in atmospheric-pressure air. Using an ICCD camera, it is found that, at centimeter gap lengths and a voltage pulse duration of ≈300 ns, the beaded structure can be observed with a probability close to 100% within time intervals from a few nanoseconds to several tens of nanoseconds. The beaded structure can also be observed in the time-integrated photographs of the discharge gap, but with a low probability. It is shown that individual beads arise in the point-to-plane gap after the diffuse stage of the discharge and start from the electrode with a small curvature radius. It is established that the spark channel bridges the gap by passing through the formed beads. The glowing beads are again observed in the final stage of the discharge, when the discharge current and, accordingly, the intensity of spark emission decrease.

Notes

FUNDING

The experimental part of this work was supported by the Russian Foundation for Basic Research, project no. 18-52-53003_GFEN_a.

REFERENCES

  1. 1.
    V. P. Pasko, Plasma Phys. Controlled Fusion 50, 4050 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    Y. P. Raizer, G. M. Milikh, and M. N. Shneider, J. Geophys. Res. 115, E42 (2010).CrossRefGoogle Scholar
  3. 3.
    M. Fullekrug, D. Diver, J.-L. Pincon, J.-B. Renard, A. D. R. Phelps, A. Bourdon, C. Helling, E. Blanc, F. Honary, M. Kosch, R. G. Harrison, J.-A. Sauvaud, M. Lester, M. Rycroft, R. B. Horne, et al., Surv. Geophys. 34, 1 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    D. Siingh, R. P. Singh, S. Kumar, A. K. Singh, A. K. Singh, M. N. Patil, and Sh. Singh, J. Atmos. Solar-Terr. Phys. 134, 78 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    O. Chanrion, T. Neubert, A. Mogensen, Y. Yair, M. Stendel, R. Singh, and D. Siingh, Geophys. Rev. Lett. 44, 496 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    M. Uman, J. Atmos. Terr. Phys. 24, 43 (1962).ADSCrossRefGoogle Scholar
  7. 7.
    J. D. Barry, Ball Lightning and Bead Lightning: Extreme Forms of Atmospheric Electricity (Plenum, New York, 1980).CrossRefGoogle Scholar
  8. 8.
    G. K. Tumakaev, Tech. Phys. 40, 662 (1995).Google Scholar
  9. 9.
    A. M. Boichenko, Plasma Phys. Rep. 22, 917 (1996).ADSGoogle Scholar
  10. 10.
    M. A. Uman and V. A. Rakov, Lightning Physics and Effects (Cambridge University Press, Cambridge, 2003).Google Scholar
  11. 11.
    G. O. Ludwig and M. M. F. Saba, Phys. Plasmas 12, 093509 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    V. L. Bychkov, in Proceedings of the 15th Russian Conference on Cold Nuclear Transmutation of Chemical Elements and Ball Lightning, Sochi, 2008, p. 139.Google Scholar
  13. 13.
    V. F. Tarasenko, D. V. Beloplotov, E. Kh. Baksht, A. G. Burachenko, and M. I. Lomaev, Opt. Atmos. Okeana 28, 661 (2015).Google Scholar
  14. 14.
    S. P. A. Vayanganie, V. Cooray, M. Rahman, P. Hettiarachchi, O. Diaz, and M. Fernando, Phys. Lett. A 380, 816 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    V. F. Tarasenko and D. V. Beloplotov, Opt. Atmos. Okeana 31, 214 (2018).Google Scholar
  16. 16.
    Generation of Runaway Electrons and X-rays in High Pressure Gases, Vol. 1: Techniques and Measurements, Ed. by V. F. Tarasenko (Nova Science, New York, 2016).Google Scholar
  17. 17.
    N. Y. Babaeva, C. Zhang, J. Qiu, X. Hou, V. F. Tara-senko, and T. Shao, Plasma Sources Sci. Technol. 26, 085008 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    J. R. Dwyer, H. K. Rassoul, M. Al-Dayeh, L. Caraway, A. Chrest, B. Wright, and D. M. Jordan, Geophys. Rev. Lett. 32, L01803 (2005).Google Scholar
  19. 19.
    Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1997).Google Scholar
  20. 20.
    V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, and D. V. Rybka, Tech. Phys. 55, 210 (2010).CrossRefGoogle Scholar
  21. 21.
    V. F. Tarasenko, E. Kh. Baksht, M. I. Lomaev, D. V. Rybka, and D. A. Sorokin, Tech. Phys. 58, 1115 (2013).CrossRefGoogle Scholar
  22. 22.
    Runaway Electrons Preionized Diffuse Discharges, Ed. by V. F. Tarasenko (Nova Science, New York, 2014).Google Scholar
  23. 23.
    H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, 1964).Google Scholar
  24. 24.
    T. Shao, V. F. Tarasenko, Ch. Zhang, M. I. Lomaev, D. A. Sorokin, P. Yan, A. V. Kozyrev, and E. K. Baksht, J. Appl. Phys. 111, 023304 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    G. V. Naidis, V. F. Tarasenko, N. Yu. Babaeva, and M. I. Lomaev, Plasma Sources Sci. Technol. 27, 013001 (2018).ADSCrossRefGoogle Scholar
  26. 26.
    V. F. Tarasenko, G. V. Naidis, D. V. Beloplotov, I. D. Kostyrya, and N. Yu. Babaeva, Plasma Phys. Rep. 44, 746 (2018).ADSCrossRefGoogle Scholar
  27. 27.
    E. Kh. Baksht, A. G. Burachenko, M. V. Erofeev, and V. F. Tarasenko, Plasma Phys. Rep. 40, 404 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    A. V. Gurevich, G. M. Milikh, and R. Roussel-Dupre, Phys. Lett. A 165, 463 (1992).ADSCrossRefGoogle Scholar
  29. 29.
    E. M. Bazelyan and Yu. P. Raizer, Lightning Physics and Lightning Protection (Nauka, Moscow, 2001; IOP, Bristol, 2000).Google Scholar
  30. 30.
    A. M. Boichenko, Tech. Phys. 44, 1247 (1999).CrossRefGoogle Scholar
  31. 31.
    A. M. Boichenko, Phys. Wave Phenom. 13, 104 (2005).Google Scholar
  32. 32.
    Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC, Boca Raton, 1997).Google Scholar
  33. 33.
    P. A. Silberg, J. Geophys. Res. 67, 4941 (1962).ADSCrossRefGoogle Scholar
  34. 34.
    P. A. Silberg, in Problems of Atmospheric and Space Electricity, Ed. by S. C. Coroniti (Elsevier, Amsterdam, 1965), p. 436.Google Scholar
  35. 35.
    J. R. Powell, D. Finkelstein, M. S. Zucker, and J. R. Manwaring, paper presented at American Physical Society 8th Annual Meeting, Division of Plasma Physics, Boston, MA, 1966. Google Scholar
  36. 36.
    J. R. Powell and D. Finkelstein, Adv. Geophys. 13, 141 (1969).ADSCrossRefGoogle Scholar
  37. 37.
    J. R. Powell and D. Finkelstein, Am. Scientist 58, 262 (1970).Google Scholar
  38. 38.
    A. S. Zarin, A. A. Kuzovnikov, and V. M. Shibkov, Freely Localized Microwave Discharge in Air (Neft’ i Gaz, Moscow, 1996) [in Russian].Google Scholar
  39. 39.
    G. D. Shabanov, Tech. Phys. Lett. 28, 164 (2002).ADSCrossRefGoogle Scholar
  40. 40.
    A. I. Egorov, S. I. Stepanov, and G. D. Shabanov, Phys. Usp. 47, 99 (2004).ADSCrossRefGoogle Scholar
  41. 41.
    G. D. Shabanov and B. Yu. Sokolovskii, Plasma Phys. Rep. 31, 512 (2005).ADSCrossRefGoogle Scholar
  42. 42.
    A. I. Egorov and S. I. Stepanov, Tech. Phys. 47, 1584 (2002).CrossRefGoogle Scholar
  43. 43.
    L. V. Furov, Tech. Phys. 50, 380 (2005).CrossRefGoogle Scholar
  44. 44.
    M. Stenhoff, J. Meteorol. 29, 67 (2004).Google Scholar
  45. 45.
    A. M. Boichenko, J. Meteorol. 29, 73 (2004).Google Scholar
  46. 46.
    N. A. Ashurbekov, K. O. Iminov, and A. R. Ramazanov, J. Phys. Conf. Ser. 830, 012024 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. V. Beloplotov
    • 1
  • A. M. Boichenko
    • 1
  • V. F. Tarasenko
    • 1
    Email author
  1. 1.Institute of High Current Electronics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations