Advertisement

Plasma Physics Reports

, Volume 45, Issue 3, pp 237–245 | Cite as

Effect of Magnetic Field on the Spectral Characteristics of Thermal Motion of Charged Particles in an Isotropic Trap

  • O. S. VaulinaEmail author
  • E. A. Sametov
PLASMA KINETICS
  • 9 Downloads

Abstract

Results are presented from analytical and numerical studies of the effect of a dc magnetic field on the spectral characteristics of thermal motion of charged particles in an isotropic electrostatic trap. An analytic expression for the spectral density of the shifts of the center of mass of the systems under study is obtained. The analytic expression is verified by numerically simulating ensembles with different numbers of particles interacting via the Coulomb potential in a wide range of parameters.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 14-29-00231.

REFERENCES

  1. 1.
    Photon Correlation and Light Beating Spectroscopy, Ed. by H. Z. Cummins and E. R. Pike (Plenum, New York, 1974).Google Scholar
  2. 2.
    Ya. I. Frenkel, Kinetic Theory of Liquids (Nauka, Moscow, 1975; Oxford University Press, Oxford, 1976).Google Scholar
  3. 3.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley Interscience, New York, 1975).zbMATHGoogle Scholar
  4. 4.
    A. A. Ovchinnikov, S. F. Timashev, and A. A. Belyi, Kinetics of Diffusion-Controlled Chemical Processes (Khimiya, Moscow, 1986; Nova Science, Commack, NY, 1989).Google Scholar
  5. 5.
    O. S. Vaulina, O. F. Petrov, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, Dusty Plasma: Experiment and Theory (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  6. 6.
    Complex and Dusty Plasmas, Ed. by V. E. Fortov and G. E. Morfill (CRC, Boca Raton, FL, 2010).Google Scholar
  7. 7.
    Y. P. Raizer, V. I. Kisin, and J. E. Allen, Gas Discharge Physics (Springer, Berlin, 2011).Google Scholar
  8. 8.
    J. I. Jimenez-Aquino, R. M. Velasco, and F. J. Uribe, Phys. Rev. E 77, 051105 (2008).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    L. J. Hou, Z. L. Miskovic, A. Piel, and P. K. Shukla, Phys. Plasmas 16, 053705 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    B. Farokhi, M. Shahmansouri, and P. K. Shukla, Phys. Plasmas 16, 063703 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    O. S. Vaulina, E. A. Lisin, and E. A. Sametov, JETP 125, 976 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    E. A. Sametov, R. A. Timirkhanov, and O. S. Vaulina, Phys. Plasmas 24, 123504 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    O. S. Vaulina and K. G. Adamovich, JETP 106, 955 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    O. S. Vaulina, K. G. Adamovich, O. F. Petrov, and V. E. Fortov, JETP 107, 313 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    O. S. Vaulina, E. A. Lisin, A. V. Gavrikov, O. F. Petrov, and V. E. Fortov, JETP 110, 662 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    O. S. Vaulina and E. A. Lisin, Phys. Plasmas 16, 113702 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    V. E. Fortov, O. F. Petrov, O. S. Vaulina, and K. G. Koss, JETP Lett. 97, 322 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    G. A. Hebner, M. E. Riley, and K. E. Greenberg, Phys. Rev. E 66, 046407 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    O. S. Vaulina and I. E. Drangevski, Phys. Scr. 73, 577 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    M. M. Vasil’ev, L. G. D’yachkov, S. N. Antipov, O. F. Petrov, and V. E. Fortov, JETP Lett. 86, 358 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    L. G. D’yachkov, O. F. Petrov, and V. E. Fortov, Contrib. Plasma Phys. 49, 134 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    V. Yu. Karasev, E. S. Dzlieva, A. Yu. Ivanov, and A. I. Eikhval’d, Phys. Rev. E 74, 066403 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    N. Sato, G. Uchida, and T. Kaneko, Phys. Plasmas 8, 1786 (2001).ADSCrossRefGoogle Scholar
  24. 24.
    R. F. Post, Rev. Mod. Phys. 28, 338 (1956).ADSCrossRefGoogle Scholar
  25. 25.
    L. A. Artsimovich, Controlled Thermonuclear Reactions (Fizmatgiz, Moscow, 1961; Gordon & Breach, New York, 1964).Google Scholar
  26. 26.
    R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Controlled Fusion 44, 519 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    A. V. Timofeev, Plasma Phys. Rep. 33, 890 (2007).ADSCrossRefGoogle Scholar
  28. 28.
    B. P. Cluggish, F. A. Anderegg, R. L. Freeman, J. Gilleland, T. J. Hilsabeck, and R. C. Isler, IEEE Trans. Plasma Sci. 12, 057101 (2005).Google Scholar
  29. 29.
    N. A. Vorona, A. V. Gavrikov, A. A. Samokhin, V. P. Smirnov, and Yu. S. Khomyakov, Yad. Fiz. Inzhin. 5, 944 (2014).Google Scholar
  30. 30.
    V. P. Smirnov, A. A. Samokhin, N. A. Vorona, and A. V. Gavrikov, Plasma Phys. Rep. 39, 456 (2013).ADSCrossRefGoogle Scholar
  31. 31.
    V. B. Yuferov, A. M. Egorov, V. O. Il’icheva, S. V. Sharyi, and K. I. Zhivankov, Vopr. At. Nauki Tekh., Ser. Fiz. Radiat. Povrezhd. Radiat. Materialoved. 101, 148 (2013).Google Scholar
  32. 32.
    Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).Google Scholar
  33. 33.
    E. A. Lisin and O. S. Vaulina, JETP 115, 947 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).ADSCrossRefGoogle Scholar
  35. 35.
    O. S. Vaulina and E. A. Sametov, JETP 127, 350 (2018).ADSCrossRefGoogle Scholar
  36. 36.
    A. A. Voronov, Theory of Automatic Control (Vysshaya Shkola, Moscow, 1986), Part 2 [in Russian].Google Scholar
  37. 37.
    A. A. Shchegol’kov, Molodezh. Nauchno-Tekh. Vest. 8, 24 (2013).Google Scholar
  38. 38.
    O. S. Vaulina, I. I. Lisina, and E. A. Lisin, Plasma Phys. Rep. 44, 270 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations