Advertisement

Plasma Physics Reports

, Volume 45, Issue 3, pp 285–288 | Cite as

Boundary of the Transition to Hollow Dust Structures in a DC Discharge in Neon with Microparticles

  • V. V. ShumovaEmail author
  • D. N. Polyakov
  • L. M. Vasilyak
APPLIED PHYSICS
  • 18 Downloads

Abstract

The boundary (line) of the transition from homogenous dust structures to hollow dust structures in the coordinates gas pressure–discharge current in a glow discharge in neon was found experimentally. The experiments were carried out with spherical particles 2.55 and 4.14 μm in diameter. The transition was simulated using the diffusion–drift model of the positive column of a glow discharge in neon with allowance for the radial temperature gradient. Simulations of the experimental data have shown that the thermophoretic force acting on the microparticles in the dust structure depends on the discharge parameters and the dimensions of the microparticles and the dust structure. The results of this work can be used in dusty plasma technologies.

Notes

ACKNOWLEDGMENTS

This work was supported by the Presidium of the Russian Academy of Sciences under the program no. 13 “Condensed Matter and Plasma at High Energy Densities.”

REFERENCES

  1. 1.
    H. Kersten, G. Thieme, M. Frohlich, D. Bojic, D. H. Tung, M. Quaas, H. Wulff, and R. Hippler, Pure Appl. Chem. 77, 415 (2005).CrossRefGoogle Scholar
  2. 2.
    L. M. Vasilyak, M. N. Vasil’ev, S. P. Vetchinin, D. N. Polyakov, and V. E. Fortov, Tech. Phys. Lett. 31, 827 (2005).CrossRefGoogle Scholar
  3. 3.
    T. M. Vasil’eva, High Energy Chem. 45, 66 (2011).CrossRefGoogle Scholar
  4. 4.
    S. V. Vladimirov and K. Ostrikov, Phys. Rep. 393, 175 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    M. Cavarroc, M. Mikikian, Y. Tessier, and L. Boufendi, IEEE Trans. Plasma Sci. 36, 1016 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    L. Boufendi, M. Ch. Jouanny, E. Kovacevic, J. Berndt, and M. Mikikian, J. Phys. D 44, 174035 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Huttel, Gas-Phase Synthesis of Nano-Particles (Weinheim, Wiley VCH, 2017).CrossRefGoogle Scholar
  8. 8.
    H. Kersten, H. Deutsch, E. Stoffels, W. W. Stoffels, and G. M. W. Kroesen, Int. J. Mass Spectr. 223–224, 313 (2003).CrossRefGoogle Scholar
  9. 9.
    M. N. Vasiliev and A. H. Mahir, Surf. Coat. Technol. 180–181, 132 (2004).CrossRefGoogle Scholar
  10. 10.
    N. A. Polikarpov, N. D. Novikova, G. E. Val’yano, L. M. Vasilyak, I. I. Klimovskii, V. Ya. Pecherkin, E. K. Dobrinskii, and S. I. Malashin, Aviakosmich. Ekologich. Med. 44 (6), 40 (2010).Google Scholar
  11. 11.
    V. V. Balabanov, L. M. Vasilyak, S. P. Vetchinin, A. P. Nefedov, D. N. Polyakov, and V. E. Fortov, JETP 92, 86 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    G. M. Jellum, J. E. Daugherty, and D. B. Graves, J. Appl. Phys. 69, 6923 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    L. M. Vasilyak, S. P. Vetchinin, V. S. Zimnukhov, D. N. Polyakov, and V. E. Fortov, JETP 96, 436 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    L. M. Vasilyak, S. P. Vetchinin, D. N. Polyakov, and V. E. Fortov, JETP 100, 1029 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    O. Arp, D. Block, M. Klindworth, and A. Piel, Phys. Plasmas. 12, 122102 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    V. I. Molotkov, O. F. Petrov, M. Yu. Pustyl’nik, V. M. Torchinskii, V. E. Fortov, and A. G. Khrapak, High Temp. 42, 827 (2004).CrossRefGoogle Scholar
  17. 17.
    V. Land, B. Smith, and L. Matthews, IEEE Trans. Plasma Sci. 38, 768 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    C. Schmidt, O. Arp, and A. Piel, Phys. Plasmas. 18, 013704 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    V. V. Shimova, D. N. Polyakov, and L. M. Vasilyak, Prikl. Fiz., No. 4, 27 (2015).Google Scholar
  20. 20.
    V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, J. Phys. D 50, 405202 (2017).CrossRefGoogle Scholar
  21. 21.
    V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, Plasma Sources Sci. Technol. 23, 065008 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, J. Phys. Conf. Ser. 653, 012132 (2015).CrossRefGoogle Scholar
  23. 23.
    V. V. Shumova, D. N. Polyakov, and L. M. Vasilyak, Plasma Sources Sci. Technol. 26, 035011 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    L. C. Pitchford, J. Phys. D 46, 330301 (2013).CrossRefGoogle Scholar
  25. 25.
    G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    S. A. Khrapak, A. V. Ivlev, G. E. Morfill, and H. M. Thomas, Phys. Rev. E 66 (4), 046414 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    H. Rothermel, T. Hagl, G. E. Morfill, M. H. Thoma, and H. M. Thomas, Phys. Rev. Lett. 89, 175001 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    R. N. Varney, Phys. Rev. 88, 362 (1952).ADSCrossRefGoogle Scholar
  29. 29.
    D. N. Polyakov, V. V. Shumova, and L. M. Vasilyak, Plasma Phys. Rep. 43, 397 (2017).ADSCrossRefGoogle Scholar
  30. 30.
    O. Havnes, T. Nitter, V. Tsytovich, G. E. Morfill, and T. Hartquist, Plasma Sources Sci. Technol. 3, 448 (1994).ADSCrossRefGoogle Scholar
  31. 31.
    M. A. Gallis, D. J. Rader, and J. R. Torczynski, Aerosol Sci. Technol. 36, 1099 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Shumova
    • 1
    Email author
  • D. N. Polyakov
    • 1
  • L. M. Vasilyak
    • 1
  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia

Personalised recommendations