Advertisement

Plasma Physics Reports

, Volume 45, Issue 3, pp 207–219 | Cite as

Modified Canonical Profile Transport Model for Description of On-Axis Electron-Cyclotron Heating of Tokamak Plasma

  • Yu. N. DnestrovskijEmail author
  • V. A. Vershkov
  • A. V. Danilov
  • A. Yu. Dnestrovskij
  • S. E. Lysenko
  • A. V. Melnikov
  • G. F. Subbotin
  • D. Yu. Sychugov
  • S. V. Cherkasov
  • D. A. Shelukhin
TOKAMAKS
  • 5 Downloads

Abstract

The specific power deposited in plasma under on-axis electron-cyclotron resonance heating (ECRH) is characterized by strong peaking, resulting in large-amplitude sawtooth oscillations. To analyze the global properties of plasma, instantaneous experimental profiles of the electron temperature should be averaged over time and space. In the present work, a modified canonical profile transport model for predictive calculation of such averaged profiles is proposed. As an example, the model is used to determine the parameters of plasma with ECRH in the T-15MD tokamak currently under construction.

Notes

ACKNOWLEDGMENTS

The authors are grateful to L.G. Eliseev for an additional software alleviating the use of the ASTRA code and D.A. Kislov for providing us with the T-10 data. The T-10 experiments were supported by Rosatom, contract no. 1/15470-D/230/1040-18. This work was also supported in part by the Russian Foundation for Basic Research (projects nos. 17-07-00544 and 17‑07-00883) and the Russian Science Foundation (project no. 14-22-00193).

REFERENCES

  1. 1.
    B. B. Kadomtsev, Sov. J. Plasma Phys. 13, 443 (1987).Google Scholar
  2. 2.
    Yu. N. Dnestrovskij and G. V. Pereverzev, Plasma Phys. Controlled Fusion 30, 1417 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    Yu. N. Dnestrovskii, A. Yu. Dnestrovskii, S. E. Lysenko, and S. V. Cherkasov, Plasma Phys. Rep. 28, 887 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    Yu. N. Dnestrovskij, J. W. Connor, S. V. Cherkasov, A. V. Danilov, A. Yu. Dnestrovskij, S. E. Lysenko, C. M. Roach, and M. Walsh, Plasma Phys. Controlled Fusion 49, 1477 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    Yu. N. Dnestrovskij, Self-Organization of Hot Plasmas: The Canonical Profile Transport Model (Springer, New York, 2015).CrossRefGoogle Scholar
  6. 6.
    C. M. Roach, M. Walters, R. V. Budny, F. Imbeaux, T. W. Fredian, M. Greenwald, J. A. Stillerman, D. A. Alexander, J. Carlsson, J. R. Cary, F. Ryter, J. Stober, P. Gohil, C. Greenfield, M. Murakami, et al., Nucl. Fusion 48, 125001 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    Yu. N. Dnestrovskij, A. Yu. Dnestrovskij, A. V. Danilov, S. E. Lysenko, T. C. Hender, S. V. Cherkasov, I. A. Voitsekhovich, S. N. Gerasimov, C. M. Roach, M. J. Walsh, and JET EFDA and MAST contributors, Plasma Phys. Rep. 36, 645 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    Yu. N. Dnestrovskij, D. P. Kostomarov, and N. V. Skrydlov, Sov. Phys. Tech. Phys. 8, 69 (1964).Google Scholar
  9. 9.
    ITER Physics Expert Group on Confinement and Transport, ITER Physics Expert Group on Confinement Modelling and Database, and ITER Physics Basis Editors, Nucl. Fusion 39, 2175 (1999).Google Scholar
  10. 10.
    Yu. N. Dnestrovskij, A. V. Danilov, A. Yu. Dnestrovskij, S. E. Lysenko, A. V. Sushkov, and S. V. Cherkasov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 36 (4), 45 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. N. Dnestrovskij
    • 1
    Email author
  • V. A. Vershkov
    • 1
  • A. V. Danilov
    • 1
  • A. Yu. Dnestrovskij
    • 1
  • S. E. Lysenko
    • 1
  • A. V. Melnikov
    • 1
  • G. F. Subbotin
    • 1
  • D. Yu. Sychugov
    • 2
  • S. V. Cherkasov
    • 1
  • D. A. Shelukhin
    • 1
  1. 1.National Research Center “Kurchatov Institute”MoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations