Plasma Physics Reports

, Volume 45, Issue 1, pp 1–10 | Cite as

Discharge Oscillations in Morozov’s Stationary Plasma Thruster as a Manifestation of Large-Scale Modes of Gradient Drift Instability

  • E. A. SorokinaEmail author
  • N. A. Marusov
  • V. P. Lakhin
  • V. I. Ilgisonis


The phenomenon of large-scale discharge oscillations in Morozov’s stationary plasma thruster (SPT) is physically interpreted by analyzing global modes of gradient drift instability. The problem is solved using an ideal two-fluid hydrodynamic plasma model that includes the effects of stationary electron flow, electron inertia, and spatial inhomogeneities of the magnetic field and plasma density along the accelerating channel. The frequencies and axial structure of unstable eigenmodes are calculated for typical parameters of the SPT-100 thruster. The obtained spectrum is characterized by a finite set of long-wavelength azimuthal modes in the lower hybrid frequency range, which are predominantly localized in the near-anode region of the thruster. It is shown that the eigenmodes can form wave packets the main characteristics of which in the linear stage of instability coincide with the parameters of the experimentally observed large-scale azimuthal spoke-like structures. The influence of the thruster geometry (the length and width of the accelerating channel) on the frequency characteristics of oscillations and formation of beatings is investigated.



This work was supported in part by the Russian Foundation for Basic Research (project no. 16-02-00640) (the results presented in Section 5) and the Russian Science Foundation (project no. 17-12-01470). The publication was prepared with support from the “RUDN University Program 5-100.”


  1. 1.
    E. Y. Choueiri, Phys. Plasmas 8, 1411 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    Plasma Accelerators, Ed. by L. A. Artsimovich, S. D. Grishin, G. L. Grozdovskii, L. V. Leskov, A. I. Morozov, A. M. Dorodnov, V. G. Padalka, and M. I. Pergament (Mashinostroenie, Moscow, 1973) [in Russian].Google Scholar
  3. 3.
    C. L. Ellison, Y. Raitses, and N. J. Fisch, Phys. Plasmas 19, 013503 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    G. S. Janes and R. S. Lowder, Phys. Fluids 9, 1115 (1966).ADSCrossRefGoogle Scholar
  5. 5.
    Yu. V. Esipchuk, A. I. Morozov, G. N. Tilinin, and A. V. Trofimov, Sov. Phys. Tech. Phys. 18, 928 (1973).ADSGoogle Scholar
  6. 6.
    W. Frias, A. I. Smolyakov, I. D. Kaganovich, and Y. Raitses, Phys. Plasmas 19, 072112 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    V. P. Lakhin, V. I. Ilgisonis, A. I. Smolyakov, and E. A. Sorokina, Phys. Plasmas 23, 102304 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    A. I. Smolyakov, O. Chapurin, W. Frias, O. Koshkarov, I. Romadanov, T. Tang, M. Umansky, Y. Raitses, I. D. Kaganovich, and V. P. Lakhin, Plasma Phys. Controlled Fusion 20, 052108 (2017).Google Scholar
  9. 9.
    V. P. Lakhin, V. I. Ilgisonis, A. I. Smolyakov, E. A. Sorokina, and N. A. Marusov, Phys. Plasmas 25, 012106 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    A. Simon, Phys. Fluids 6, 382 (1963).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    F. C. Hoh, Phys. Fluids 6, 1184 (1963).ADSCrossRefGoogle Scholar
  12. 12.
    J. K. Hargreaves, The Solar−Terrestrial Environment (Cambridge University Press, Cambridge, 1992).CrossRefGoogle Scholar
  13. 13.
    A. I. Morozov and V. V. Savelyev, in Reviews of Plasma Physics, Ed. by B. B. Kadomtsev and V. D. Shafranov (Consultant Bureau, New York, 2000), Vol. 21, p. 203.Google Scholar
  14. 14.
    J. P. Boeuf, Front. Phys. 2, 74 (2014).CrossRefGoogle Scholar
  15. 15.
    A. B. Mikhailovskii, Theory of Plasma Instabilities, Vol. 2: Instabilities of an Inhomogeneous Plasma (Atomizdat, Moscow, 1971; Consultants Bureau, New York, 1974).Google Scholar
  16. 16.
    A. I. Morozov, Yu. V. Esipchuk, A. M. Kapulkin, V. A. Nevrovskii, and V. A. Smirnov, Sov. Phys. Tech. Phys. 17, 482 (1972).ADSGoogle Scholar
  17. 17.
    Yu. V. Esipchuk and G. N. Tilinin, Sov. Phys. Tech. Phys. 21, 417 (1976).Google Scholar
  18. 18.
    V. P. Lakhin, V. I. Ilgisonis, A. I. Smolyakov, E. A. Sorokina, and N. A. Marusov, Phys. Plasmas 25, 012107 (2018).ADSCrossRefGoogle Scholar
  19. 19.
    A. V. Gordeev and A. V. Grechikha, Sov. J. Plasma Phys. 18, 1 (1992).Google Scholar
  20. 20.
    N. A. Marusov, E. A. Sorokina, V. P. Lakhin, V. I. Ilgisonis, and A. I. Smolyakov, Plasma Sources Sci. Technol.
  21. 21.
    D. Escobar and E. Ahedo, in Proceedings of the 34th International Electric Propulsion Conference, Kobe, 2015, Paper IEPC-2015-371.Google Scholar
  22. 22.
    A. V. Timofeev, Resonance Phenomena in Plasma Oscillations (Fizmatlit, Moscow, 2000) [in Russian].Google Scholar
  23. 23.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, Oxford, 1987).Google Scholar
  24. 24.
    J. Boeuf and L. Garrigues, J. Appl. Phys. 84, 3541 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    R. Hofer, I. Mikellides, I. Katz, and D. Goebel, in Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, 2007, Paper AIAA 2007-5267.Google Scholar
  26. 26.
    I. Kronhaus, A. Kapulkin, V. Balabanov, M. Rubanovich, M. Guelman, and B. Natan, J. Phys. D 45, 175203 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    E. A. Sorokina, Plasma Phys. Rep. 35, 426 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    J. B. Parker, Y. Raitses, and N. J. Fisch, Appl. Phys. Lett. 97, 091501 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    M. S. McDonald and A. D. Gallimore, in Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, 2011, Paper IEPC-2011-242.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. A. Sorokina
    • 1
    • 2
    Email author
  • N. A. Marusov
    • 1
    • 2
    • 3
  • V. P. Lakhin
    • 1
    • 2
  • V. I. Ilgisonis
    • 2
    • 4
  1. 1.National Research Center “Kurchatov Institute”MoscowRussia
  2. 2.Peoples’ Friendship University of Russia (RUDN University)MoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia
  4. 4.State Atomic Energy Corporation “Rosatom”MoscowRussia

Personalised recommendations