Advertisement

Plasma Physics Reports

, Volume 45, Issue 2, pp 147–158 | Cite as

MHD Model of Interaction of the QSPA Plasma Flow with the Magnetic Field of a Current-Carrying Ring Conductor

  • A. N. KozlovEmail author
PARTICLE ACCELERATION IN PLASMA
  • 6 Downloads

Abstract

Injection of high-speed plasma flows into a region with a magnetic field created by a current-carrying ring conductor is considered. Analysis is performed on the basis of MHD equations expressed through the vector potential of the magnetic field with allowance for the electric conductivity, thermal conductivity, and radiation transport. The results of numerical experiments demonstrate the possibility of using plasma accelerators as injectors for magnetic confinement devices.

Notes

ACKNOWLEDGMENTS

This study was supported by the Russian Science Foundation, project no.16-11-10278.

REFERENCES

  1. 1.
    A. I. Morozov, Sov. J. Plasma Phys. 16, 69 (1990).Google Scholar
  2. 2.
    A. I. Morozov, Introduction to Plasma Dynamics (Fizmatlit, Moscow, 2006) [in Russian].Google Scholar
  3. 3.
    A. Yu. Voloshko, I. E. Garkusha, A. I. Morozov, D. G. Solyakov, V. I. Tereshin, A. V. Tsarenko, and V. V. Chebotarev, Sov. J. Plasma Phys. 16, 91 (1990).Google Scholar
  4. 4.
    V. G. Belan, S. P. Zolotarev, V. F. Levashov, V. S. Mainashev, A. I. Morozov, V. L. Podkovyrov, and Yu. V. Skvor-tsov, Sov. J. Plasma Phys. 16, 96 (1990).Google Scholar
  5. 5.
    S. I. Ananin, V. M. Astashinskii, G. I. Bakanovich, E. A. Kostyukevich, A. M. Kuzmitskii, A. A. Man’kovskii, L. Ya. Min’ko, and A. I. Morozov, Sov. J. Plasma Phys. 16, 102 (1990).Google Scholar
  6. 6.
    G. A. D’yakonov and V. B. Tikhonov, Plasma Phys. Rep. 20, 477 (1994).ADSGoogle Scholar
  7. 7.
    I. E. Garkusha, J. Kharkiv Nat. Univ. Phys. Ser.: Nuclei Part. Field 1040, 28 (2013).Google Scholar
  8. 8.
    D. G. Solyakov, Probl. At. Sci. Technol., Ser. Plasma Phys, No. 1, 104 (2015).Google Scholar
  9. 9.
    A. I. Morozov, Nucl. Fusion 9 (Special suppl.), 111 (1969).Google Scholar
  10. 10.
    A. N. Kozlov, Plasma Phys. Controlled Fusion 59, 115004 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    V. I. Tereshin, A. N. Bandura, O. V. Byrka, V. V. Chebotarev, I. E. Garkusha, I. Landman, V. A. Makhlaj, I. M. Neklyudov, D. G. Solyakov, and A. V. Tsarenko, Plasma Phys. Controlled Fusion 49, A231 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    N. Klimov, V. Podkovyrov, A. Zhitlukhin, D. Kovalenko, B. Bazylev, I. Landman, S. Pestchanyi, G. Janeschitz, G. Federici, M. Merola, A. Loarte, J. Linke, T. Hirai, and J. Compan, J. Nucl. Mater. 390−391, 721 (2009).Google Scholar
  13. 13.
    V. M. Astashynski, S. I. Ananin, V. V. Askerko, E. A. Kostyukevich, A. M. Kuzmitski, V. V. Uglov, V. M. Anishchik, V. V. Astashynski, N. T. Kvasov, and L. A. Danilyuk, J. Surf. Coat. Technol. 180−181, 392 (2004).Google Scholar
  14. 14.
    A. I. Morozov and V. V. Savel’ev, Phys. Usp. 41, 1049 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    A. I. Morozov, A. I. Bugrova, A. M. Bishaev, M. V. Kozintseva, and A. S. Lipatov, Tech. Phys. 52, 1546 (2007).CrossRefGoogle Scholar
  16. 16.
    A. I. Morozov and A. N. Kozlov, in Physics of Extreme States of Matter 2007, Ed. by V. E. Fortov et al. (IPKhF RAN, Chernogolovka, 2007), p. 316 [in Russian].Google Scholar
  17. 17.
    A. I. Morozov, Physical Principles of Space Electric Propulsion Thrusters (Atomizdat, Moscow, 1978) [in Russian].Google Scholar
  18. 18.
    A. I. Morozov and V. V. Savelyev, in Reviews of Plasma Physics, Ed. by B. B. Kadomtsev and V. D. Shafranov (Consultant Bureau, New York, 2000), Vol. 21, p. 203.Google Scholar
  19. 19.
    A. I. Morozov and V. V. Savel’ev, Plasma Phys. Rep. 27, 570 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    A. S. Arkhipov, V. Kim, and E. K. Sidorenko, Morozov’s Stationary Plasma Thrusters (MAI, Moscow, 2012) [in Russian].Google Scholar
  21. 21.
    A. N. Kozlov, Plasma Phys. Rep. 28, 158 (2002).ADSCrossRefGoogle Scholar
  22. 22.
    H. Alfvén, Cosmical Electrodynamics (Oxford University Press, London, 1950).zbMATHGoogle Scholar
  23. 23.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Fizmatgiz, Moscow, 1959; Pergamon, Oxford, 1960).Google Scholar
  24. 24.
    L. A. Artsimovich, Controlled Thermonuclear Reactions (Fizmatgiz, Moscow, 1961; Gordon & Breach, New York, 1964).Google Scholar
  25. 25.
    S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 205.Google Scholar
  26. 26.
    V. D. Shafranov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1967), Vol. 3, p. 1.Google Scholar
  27. 27.
    Ya. B. Zel’dovich and Yu. P. Raizer, Elements of Gas Dynamics and the Classical Theory of Shock Waves (Nauka, Moscow, 1966; Academic, New York, 1968).Google Scholar
  28. 28.
    N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (Academic, New York, 1973).CrossRefGoogle Scholar
  29. 29.
    L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Nauka, Moscow, 1982; Consultants Bureau, New York, 1987).Google Scholar
  30. 30.
    B. N. Chetverushkin, Mathematical Modeling of Radiating Gas Dynamics (Nauka, Moscow, 1985) [in Russian].Google Scholar
  31. 31.
    B. B. Kadomtsev, Collective Phenomena in Plasma (Nauka, Moscow, 1988) [in Russian].Google Scholar
  32. 32.
    E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flows (Elsevier, New York, 1987).zbMATHGoogle Scholar
  33. 33.
    B. A. Trubnikov, Plasma Theory (Energoatomizdat, Moscow, 1996) [in Russian].Google Scholar
  34. 34.
    A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Seme-nov, Mathematical Problems of Numerical Solution of Sets of Hyperbolic Equations (Fizmatlit, Moscow, 2001) [in Russian].Google Scholar
  35. 35.
    M. M. Basko, B. Yu. Sharkov, A. V. Zabrodin, S. Yu. Gus’kov, A. N. Didenko, V. S. Imshennik, D. G. Koshkarev, M. V. Maslennikov, S. A. Medin, S. L. Nedoseev, V. P. Smirnov, V. I. Subbotin, L. P. Feoktistov, V. V. Kharitonov, and M. D. Churazov, Inertial Confinement Fusion: Modern State and Prospects for Power Engineering (Fizmatlit, Moscow, 2005) [in Russian].Google Scholar
  36. 36.
    V. E. Fortov, Equation of State: From Ideal Gas to Quark−Gluon Plasma (Fizmatlit, Moscow, 2012) [in Russian].zbMATHGoogle Scholar
  37. 37.
    V. I. Ilgisonis, Classical Problems in the Physics of Hot Plasma (Izd. dom MEI, Moscow, 2015) [in Russian].Google Scholar
  38. 38.
    A. I. Morozov and L. S. Solov’ev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1980), Vol. 8, p. 301.Google Scholar
  39. 39.
    K. V. Brushlinskii and A. I. Morozov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1980), Vol. 8, p. 105.Google Scholar
  40. 40.
    K. V. Brushlinskii, A. M. Zaborov, A. N. Kozlov, A. I. Morozov, and V. V. Savelyev, Sov. J. Plasma Phys. 16, 79 (1990).Google Scholar
  41. 41.
    K. V. Brushlinskii, Mathematical Foundations of Liquid, Gas, and Plasma Computational Mechanics (Intellekt, Dolgoprudnyi, 2017) [in Russian].Google Scholar
  42. 42.
    A. N. Kozlov, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 181 (2000).Google Scholar
  43. 43.
    A. A. Barmin and A. N. Kozlov, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 155 (2013).Google Scholar
  44. 44.
    K. V. Brushlinskii, A. N. Kozlov, and V. S. Konovalov, Zh. Vych. Mat. Mat. Fiz. 55, 1405 (2015).Google Scholar
  45. 45.
    A. N. Kozlov and V. S. Konovalov, Commun. Nonlin. Sci. Num. Simulat. 51, 169 (2017).CrossRefGoogle Scholar
  46. 46.
    A. N. Kozlov, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 165 (2003).Google Scholar
  47. 47.
    A. N. Kozlov, Plasma Phys. Rep. 32, 378 (2006).ADSCrossRefGoogle Scholar
  48. 48.
    A. N. Kozlov, J. Plasma Phys. 74, 261 (2008).ADSCrossRefGoogle Scholar
  49. 49.
    A. N. Kozlov, Prikl. Mekh. Tekh. Fiz. 50, 44 (2009).Google Scholar
  50. 50.
    A. N. Kozlov, Plasma Phys. Rep. 38, 12 (2012).ADSCrossRefGoogle Scholar
  51. 51.
    A. V. Burdakov, A. P. Avrorov, A. V. Arzhannikov, V. T. Astrelin, V. I. Batkin, A. D. Beklemishev, V. S. Burmasov, P. V. Bykov, G. E. Derevyankin, V. G. Ivanenko, and I. A. Ivanov, Fusion Sci. Technol. 63, 29 (2013).CrossRefGoogle Scholar
  52. 52.
    K. V. Brushlinskii and A. S. Goldich, Diff. Equat. 52, 845 (2016).CrossRefGoogle Scholar
  53. 53.
    S. Yu. Medvedev, A. A. Martynov, V. V. Drozdov, A. A. Ivanov, and Yu. Yu. Poshekhonov, Plasma Phys. Controlled Fusion 59, 025018 (2017).ADSCrossRefGoogle Scholar
  54. 54.
    A. Merle, O. Sauter, and S. Yu. Medvedev, Plasma Phys. Controlled Fusion 59, 104001 (2017).ADSCrossRefGoogle Scholar
  55. 55.
    A. M. Bishaev, M. B. Gavrikov, M. V. Kozintseva, and V. V. Savelyev, Tech. Phys. 63, 20 (2018).CrossRefGoogle Scholar
  56. 56.
    A. I. Morozov and V. V. Savel’ev, Plasma Phys. Rep. 22, 288 (1996).ADSGoogle Scholar
  57. 57.
    D. Mihalas, Stellar Atmospheres (Freeman, San Francisco, 1978).Google Scholar
  58. 58.
    J. I. Castor, Lectures on Radiation Hydrodynamics (Lawrence Livermore National Laboratory, Livermore, CA, 2000).Google Scholar
  59. 59.
    I. I. Sobel’man, L. A. Vainstein, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Nauka, Moscow, 1979; Springer-Verlag, Berlin, 1981).Google Scholar
  60. 60.
    A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter (Fizmatlit, Moscow, 2000; Birkhäuser, Basel, 2005).Google Scholar
  61. 61.
    A. N. Kozlov, S. P. Drukarenko, N. S. Klimov, A. A. Moskacheva, and V. L. Podkovyrov, Probl. At. Sci. Technol. Ser. Plasma Phys., No. 1, 92 (2009).Google Scholar
  62. 62.
    L. M. Degtyarev and A. P. Favorskii, Zh. Vych. Mat. Mat. Fiz. 9, 211 (1969).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Keldysh Institute of Applied Mathematics, Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Mechanics and Mathematics, Moscow State UniversityMoscowRussia

Personalised recommendations