Plasma Physics Reports

, Volume 45, Issue 1, pp 11–20 | Cite as

Influence of Xenon and Krypton Flow Rates through the Acceleration Channel of Morozov’s Stationary Plasma Thruster on the Thrust Efficiency

  • V. P. KimEmail author
  • V. S. Zakharchenko
  • D. V. Merkur’ev
  • P. G. Smirnov
  • E. A. Shilov


Morozov’s stationary plasma thrusters (SPTs) operating with xenon have been successfully used for many years in space technology. At the same time, due to the high cost of xenon, interest has arisen in alternate working substances. In a number of works, specific features and characteristics of SPTs operating with krypton, which is produced in greater amounts and is one order of magnitude cheaper than xenon, were studied. It was shown that SPTs operating with krypton under typical SPT conditions have traditional characteristics; however, their thrust efficiency is significantly lower than that of thrusters operating with xenon. One of the main reasons for the reduction in the thrust efficiency is the lower conversion efficiency of krypton atoms into ions, which depends on many factors. The most important among them is the krypton flow rate, which determines the plasma density in the acceleration channel. The influence of this parameter on the characteristics of SPTs operating with krypton has not yet received sufficient study, and most works were carried out using one model and in a limited range of krypton flow rates. This paper presents results of a comparative study of the influence of the xenon and krypton flow rates on the characteristics of different-scale SPTs in a wide range of gas flow rates. The results of this study provide information on the specific features of SPTs operating with krypton for different values of the gas flow rate and different geometries of the exit part of the acceleration channel. This information can be helpful for the development of advanced thrusters operating with krypton.



This work was supported by the Russian Science Foundation, grant no. 16-19-10429.


  1. 1.
    A. I. Morozov, Plasma Phys. Rep. 29, 235 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    V. P. Kim, Tech. Phys. 60, 362 (2015).CrossRefGoogle Scholar
  3. 3.
    S. D. Grishin, V. S. Erofeyev, and A. V. Zharinov, in Plasma Accelerators, Ed. by L. A. Artsimovich, S. D. Grishin, G. L. Grodzovskii, L. V. Leskov, A. I. Morozov, A. M. Dorodnov, V. G. Padalka, and M. I. Pergament (Mashinostroenie, Moscow, 1973) [in Russian], p. 54Google Scholar
  4. 4.
    A. I. Morozov and I. V. Melikov, Sov. Phys. Tech. Phys. 19, 340 (1974).ADSGoogle Scholar
  5. 5.
    V. P. Kim, D. V. Merkur’ev, P. G. Smirnov, and E. A. Shilov, Tech. Phys. Lett. 43, 1060 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    V. Kim, J. Propul. Power 14, 736 (1998).CrossRefGoogle Scholar
  7. 7.
    A. S. Arkhipov, V. Kim, and E. K. Sidorenko, Morozov’s Stationary Plasma Thrusters (MAI, Moscow, 2012) [in Russian].Google Scholar
  8. 8.
    A. S. Arkhipov, V. Kim, and E. K. Sidorenko, Tech. Phys. 57, 621 (2012).CrossRefGoogle Scholar
  9. 9.
    R. R. Hofer and A. D. Gallimore, in Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Huntsville, AL, 2003, Paper AIAA-2003-5001.Google Scholar
  10. 10.
    V. Kim, G. Popov, V. Kozlov, A. Skrylnikov, and D. Grdlichko, in Proceedings of the 27th International Electric Propulsion Conference, Pasadena, CA, 2001, Paper IEPC-01-065.Google Scholar
  11. 11.
    V. S. Zhasan, V. P. Kim, D. V. Merkur’ev, V. M. Murashko, A. N. Nesterenko, G. A. Popov, M. Yu. Potapenko, P. G. Smirnov, and E. A. Shilov, Izv. Ross. Acad. Nauk, Energet., No. 2, 66 (2016).Google Scholar
  12. 12.
    S. K. Absalamov, V. B. Andreev, T. Colbert, M. Day, V. V. Egorov, R. Yu. Gnizdor, H. Kaufman, V. Kim, A. I. Koryakin, K. N. Kozubsky, S. S. Kudryavtsev, U. V. Lebedev, G. A. Popov, and V. V. Zhurin, in Proceedins of the 28th Joint Propulsion Conference & Exhibit, Nashville, TN, 1992, Paper AIAA 92-3156.Google Scholar
  13. 13.
    F. Darnon and A. Cadiou, Final report of the INTAS-99-1225 Project (CNES, Toulouse, 2002).Google Scholar
  14. 14.
    T. Andreussi, A. Arkhipov, A. Passaro, M. Andrenucci, A. Bulit, and C. Edwards, in Proceedings of the 30th International Symposium on Space Technology and Science, 34th International Electric Propulsion Conference, and 6th Nanosatellite Symposium, Hyogo−Kobe, 2015, Paper IEPC-2015-126/ISTS-2015-b-126.Google Scholar
  15. 15.
    M. R. Nakles, W. A. Hargus, J. J. Delgado, and R. L. Corey, in Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, 2011, Paper IEPC-2011-003.Google Scholar
  16. 16.
    A. I. Bugrova, A. S. Lipatov, A. I. Morozov, and D. V. Churbanov, Tech. Phys. Lett. 28, 821 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    A. Shagaida, in Proceedings of the 33rd International Electric Propulsion Conference, Washington, DC, 2013, Paper IEPC-2013-056.Google Scholar
  18. 18.
    V. Kim, D. Grdlichko, V. Kozlov, A. Lazourenko, G. Popov, and A. Skrylnikov, in Proceedings of the 38th Joint Propulsion Conference, Indianapolis, IN, 2002, Paper AIAA 2002-4108.Google Scholar
  19. 19.
    O. A. Mitrofanova and R. Yu. Gnizdor, in Proceedings of the 33rd International Electric Propulsion Conference, Washington, DC, 2013, Paper IEPC-2013-51.Google Scholar
  20. 20.
    K. N. Kozubskii, V. M. Murashko, Yu. P. Rylov, Yu. V. Trifonov, V. P. Khodnenko, V. Kim, G. A. Popov, and V. A. Obukhov, Plasma Phys. Rep. 29, 251 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    V. P. Kim, Plasma Phys. Rep. 43, 486 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. P. Kim
    • 1
    Email author
  • V. S. Zakharchenko
    • 1
  • D. V. Merkur’ev
    • 1
  • P. G. Smirnov
    • 1
  • E. A. Shilov
    • 1
  1. 1.Research Institute of Applied Mechanics and Electrodynamics, National Research University “Moscow Aviation Institute”MoscowRussia

Personalised recommendations