Advertisement

Plasma Physics Reports

, Volume 45, Issue 2, pp 166–178 | Cite as

Experimental Studies of High-Energy Quasi-Steady Plasma Streams Generated by a Magnetoplasma Analogue of the Laval Nozzle in the Compression and Acceleration Regimes

  • I. E. Garkusha
  • D. G. SolyakovEmail author
  • V. V. Chebotarev
  • V. A. Makhlay
  • N. V. Kulik
PLASMA ACCELERATORS
  • 6 Downloads

Abstract

Results of many-year-long studies of high-power quasi-stationary acceleration and compression systems whose channel is a magnetoplasma analogue of the Laval nozzle are summarized. Double-stage quasi-stationary plasma accelerators with channels made of rod electrodes or complicated magnetoplasma transformers are described. Results are presented from experimental studies of acceleration and compression systems. It is shown that, in the optimal operating regime corresponding to the proper choice of the initial and boundary conditions, plasmadynamic devices are able to generate plasma streams with parameters close to the theoretical limit for given experimental conditions. A unique set of parameters of the generated streams were achieved: the density of the accelerated stream of up to 1016 cm–3 at a maximum velocity of (4–4.2) × 107 cm/s and the density of the compressed stream of up to 1019 cm–3 at a plasma temperature of 60–100 eV. The total energy content in the accelerated plasma streams reaches 0.9–0.95 MJ at an accelerating channel efficiency of 0.8–0.9. The generation time of accelerated stream amounts to 150–200 particle flight times along the channel of the plasmadynamic device, while the lifetime of the compression region reaches 20–30 particle flight times.

Notes

REFERENCES

  1. 1.
    A. I. Morozov, Sov. Phys. JETP 5, 215 (1957).Google Scholar
  2. 2.
    A. I. Morozov, Sov. Phys. Tech. Phys. 12, 1580 (1968).Google Scholar
  3. 3.
    A. I. Morozov and L. S. Solov’ev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1980), Vol. 8, p. 1Google Scholar
  4. 4.
    A. I. Morozov, Physical Principles of Space Electric Propulsion Thrusters (Atomizdat, Moscow, 1978) [in Russian].Google Scholar
  5. 5.
    A. I. Morozov, Phys. Usp. 33, 576 (1990).ADSCrossRefGoogle Scholar
  6. 6.
    A. I. Morozov, Sov. J. Plasma Phys. 1, 95 (1975).ADSGoogle Scholar
  7. 7.
    K. V. Brushlinskii and A. I. Morozov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1980), Vol. 8, p. 105.Google Scholar
  8. 8.
    K. V. Brushlinskii, A. I. Morozov, V. V. Paleichik, and V. V. Savel’ev, Sov. J. Plasma Phys. 2, 291 (1976).ADSGoogle Scholar
  9. 9.
    K. V. Brushlinskii, A. I. Morozov, and L. S. Solov’ev, Two-Dimensional Numerical Plasma Models, Ed. by K. V. Brushlinskii (IPM im. M.V. Keldysha AN SSSR, Moscow, 1979), p. 7 [in Russian].Google Scholar
  10. 10.
    K. V. Brushlinskii, A. N. Kozlov, and A. I. Morozov, Sov. J. Plasma Phys. 11, 778 (1985).Google Scholar
  11. 11.
    K. V. Brushlinskii, A. M. Zaborov, A. N. Kozlov, and A. I. Morozov, Sov. J. Plasma Phys. 16, 79 (1990).Google Scholar
  12. 12.
    A. N. Kozlov, Sov. J. Plasma Phys. 18, 369 (1992).Google Scholar
  13. 13.
    K. V. Brushlinskii and K. P. Gorshenin, Plasma Phys. Rep. 19, 351 (1993).ADSGoogle Scholar
  14. 14.
    A. I. Morozov, P. E. Kovrov, and A. K. Vinogradova, JETP Lett. 7, 199 (1968).ADSGoogle Scholar
  15. 15.
    A. K. Vinogradova, P. E. Kovrov, A. I. Morozov, and L. G. Tokarev, Sov. Phys. Tech. Phys. 18, 1604 (1973).ADSGoogle Scholar
  16. 16.
    V. I. Berkov and A. I. Morozov, Sov. Phys. Tech. Phys. 19, 220 (1974).ADSGoogle Scholar
  17. 17.
    P. E. Kovrov and A. P. Shubin, in Physics and Application of Plasma Accelerators, Ed. by A. I. Morozov (Nauka i Tekhnika, Minsk, 1974), p. 78 [in Russian].Google Scholar
  18. 18.
    A. K. Vinogradova and A. I. Morozov, in Physics and Application of Plasma Accelerators, Ed. by A. I. Morozov (Nauka i Tekhnika, Minsk, 1974), p. 103 [in Russian].Google Scholar
  19. 19.
    K. V. Brushlinskii, A. K. Vinogradova, and A. I. Morozov, Sov. Tech. Phys. Lett. 1, 297 (1975).Google Scholar
  20. 20.
    A. K. Vinogradova and A. I. Morozov, Sov. Phys. Tech. Phys. 21, 1475 (1976).Google Scholar
  21. 21.
    P. E. Kovrov and A. I. Morozov, Sov. Phys. Tech. Phys. 21, 1483 (1976).Google Scholar
  22. 22.
    V. M. Astashinskii, G. I. Bakanovich, and L. Ya. Min’ko, Zh. Prikl. Spektrosk. 33, 629 (1980).ADSGoogle Scholar
  23. 23.
    V. M. Astashinskii, G. I. Bakanovich, E. A. Kostyukevich, A. M. Kuzminskii, and L. Ya. Min’ko, Zh. Prikl. Spektrosk. 50, 887 (1989).Google Scholar
  24. 24.
    V. M. Astashinskii, G. I. Bakanovich, A. M. Kuzminskii, and L. Ya. Min’ko, Inzh.-Fiz. Zh. 2, 386 (1992).Google Scholar
  25. 25.
    A. I. Morozov, in Radiative Plasma Dynamics, Ed. by Yu. S. Protasov (Energoatomizdat, Vjscow, 1990), Vol. 1, p. 157 [in Russian].Google Scholar
  26. 26.
    A. I. Morozov, Nucl. Fusion 9 (Special suppl.), 111 (1969).Google Scholar
  27. 27.
    A. I. Morozov, Sov. J. Plasma Phys. 16, 69 (1990).Google Scholar
  28. 28.
    A. Yu. Voloshko, I. E. Garkusha, O. E. Kazakov, A. I. Morozov, O. S. Pavlichenko, D. G. Solyakov, V. I. Tereshin, M. A. Tiarov, S. A. Trubchaninov, A. V. Tsarenko, and V. V. Chebotarev, Sov. J. Plasma Phys. 16, 85 (1990).Google Scholar
  29. 29.
    V. G. Belan, S. P. Zolotarev, V. F. Levashev, V. S. Mainashev, A. I. Morozov, V. L. Podkovyrov, and Yu. V. Skvor-tsov, Sov. J. Plasma Phys. 16, 96 (1990).Google Scholar
  30. 30.
    V. M. Astashinskii, A. A. Man’kovskii, L. Ya. Min’ko, and A. I. Morozov, Sov. J. Plasma Phys. 18, 47 (1992).Google Scholar
  31. 31.
    A. Yu. Voloshko, I. E. Garkusha, A. I. Morozov, V. I. Tereshin, A. V. Tsarenko, and V. V. Chebotarev, Sov. J. Plasma Phys. 16, 91 (1990).Google Scholar
  32. 32.
    I. E. Garkusha, A. I. Morozov, D. G. Solyakov, V. I. Tereshin, and V. V. Chebotarev, Sov. J. Plasma Phys. 18, 714 (1992).Google Scholar
  33. 33.
    A. I. Morozov, O. A. Shcurov, O. S. Pavlichenko, V. I. Tereshin, V. V. Chebotarev, Ya. F. Volkov, V. I. Kovalenko, N. V. Rulik, V. S. Manojlo, V. V. Marinin, D. G. Solyakov, V. V. Staltsov, Yu. I. Tashev, and B. Yu. Tsupko, Plasma Devices Oper. 2, 155 (1992).CrossRefGoogle Scholar
  34. 34.
    V. I. Tereshin, A. I. Morozov, I. E. Garkusha, D. G. Solyakov, N. I. Mitina, M. A. Tiarov, S. A. Trubchaninov, V. V. Chebotarev, and A. V. Tsarenko, in Proceedings of the III German−Russian Conference on Electric Propulsion Engines and Their Technical Application, Stuttgart, 1994, p. M38.Google Scholar
  35. 35.
    V. V. Chebotarev, I. E. Garkusha, V. V. Garkusha, N. V. Kulik, V. A. Makhlay, N. I. Mitina, D. G. Solyakov, V. I. Tereshin, S. A. Trubchaninov, A. V. Tsarenko, and H. Wuerz, in Proceedings of the 23rd EPS Conference on Controlled Fusion and Plasma Physics, Kiev, 1996, Vol. III, p. 1450.Google Scholar
  36. 36.
    D. G. Solyakov, I. E. Garkusha, A. I. Morozov, V. I. Tereshin, and V. V. Chebotarev, in Proceedings of the III German−Russian Conference on Electric Propulsion Engines and Their Technical Application, Stuttgart, 1994, p. M32.Google Scholar
  37. 37.
    A. I. Morozov, D. G. Solyakov, V. I. Tereshin, and V. V. Chebotarev, Plasma Phys. Rep. 20, 801 (1994).ADSGoogle Scholar
  38. 38.
    V. I. Tereshin, V. V. Chebotarev, I. E. Garkusha, V. A. Makhlaj, N. I. Mitina, A. I. Morozov, D. G. Solyakov, S. A. Trubchaninov, A. V. Tsarenko, and H. Wuerz, Trans. Fusion Technol. 35, 248 (1999).CrossRefGoogle Scholar
  39. 39.
    V. I. Tereshin, V. V. Chebotarev, D. G. Solyakov, I. E. Garkusha, V. A. Makhlaj, S. A. Trubchaninov, N. I. Mitina, A. I. Morozov, A. V. Tsarenko, and H. Wuerz, Braz. J. Phys. 32 (1), 165 (2002).ADSCrossRefGoogle Scholar
  40. 40.
    A. N. Kozlov, Izv. Ross. Akad. Nauk, Ser. Mekh. Zhidk. Gaza, No. 4, 165 (2003).Google Scholar
  41. 41.
    A. N. Kozlov, Plasma Phys. Rep. 32, 378 (2006).ADSCrossRefGoogle Scholar
  42. 42.
    A. N. Kozlov, J. Plasma Physics 74, 261 (2008).ADSCrossRefGoogle Scholar
  43. 43.
    I. E. Garkusha, V. V. Chebotarev, S. S. Herashchenko, V. A. Makhlaj, N. V. Kulik, M. S. Ladygina, A. K. Marchenko, Yu. V. Petrov, V. V. Staltsov, P. V. Shevchuk, D. G. Solyakov, and D. V. Yelisyeyev, Nucl. Fusion 57, 116011 (2017).ADSCrossRefGoogle Scholar
  44. 44.
    V. V. Chebotarev, I. E. Garkusha, M. S. Ladygina, A. K. Marchenko, Yu. V. Petrov, D. G. Solyakov, V. I. Tereshin, S. A. Trubchaninov, and A. V. Tsarenko, Chech. J. Phys. 56 (Suppl. B), 335 (2006).Google Scholar
  45. 45.
    I. E. Garkusha, V. I. Tereshin, V. V. Chebotarev, D. G. Solyakov, Yu. V. Petrov, M. S. Ladygina, A. K. Marchenko, V. V. Stal’tsov, and D. V. Eliseev, Plasma Phys. Rep. 37, 948 (2011).ADSCrossRefGoogle Scholar
  46. 46.
    A. K. Marchenko, V. V. Chebotarev, M. S. Ladygina, I. E. Garkusha, Yu. V. Petrov, D. G. Solyakov, V. V. Staltsov, V. I. Tereshin, and A. Hassanein, Probl. At. Sci. Technol., No. 6, 94 (2010).Google Scholar
  47. 47.
    T. N. Cherednychenko, I. E. Garkusha, V. V. Chebotarev, D. G. Solyakov, Yu. V. Petrov, M. S. Ladygina, D. V. Eliseev, and A. A. Chuvilo, Acta Polytech. 53 (2), 131 (2013).Google Scholar
  48. 48.
    D. G. Solyakov, Yu. V. Petrov, I. E. Garkusha, V. V. Chebotarev, M. S. Ladygina, T. M. Cherednichenko, Ya. I. Morgal’, N. V. Kulik, V. V. Stal’tsov, and D. V. Eliseev, Plasma Phys. Rep. 39, 986 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. E. Garkusha
    • 1
    • 2
  • D. G. Solyakov
    • 1
    • 2
    Email author
  • V. V. Chebotarev
    • 1
  • V. A. Makhlay
    • 1
    • 2
  • N. V. Kulik
    • 1
  1. 1.National Science Center Kharkiv Institute of Physics and TechnologyKharkivUkraine
  2. 2.V.N. Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations