Advertisement

Plasma Physics Reports

, Volume 45, Issue 1, pp 69–85 | Cite as

Analysis of the Transition Time between the Space-Charge-Limited and Inverse Regimes

  • G. R. JohnsonEmail author
  • M. D. Campanell
PLASMA−WALL INTERACTION
  • 14 Downloads

Abstract

Accumulation of cold ions trapped within a space-charge-limited sheath collapses the sheath, causing a transition to the inverse sheath mode. A driving mechanism creating trapped ions is charge-exchange collisions which occur between fast ions and cold neutrals. Due to the complex nature of the temporally evolving sheath, it is difficult to predict how long the transition takes. Depending on the properties of the plasma, emitted electrons, and neutrals, the time scale can range from microseconds to hours. For experimental situations, it is important to understand whether the sheath will transition to an inverse mode within the observation time allotted. In this paper, we establish a theoretical basis for defining transition time of the sheath in terms of plasma properties. Calculations include an analytical approximation for the length of the virtual cathode, the amount of charged particles in each layer of the space-charge-limited sheath, and a time for its transition to the inverse sheath. The theoretical model is then compared to 1D kinetic simulations of a space-charge-limited sheath with charge-exchange collisions present. The results are applied to estimate transition time scales for applications in laboratory plasma experiments, the lunar sheath, and tokamaks.

Notes

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract no. DE-AC52-07NA27344.

REFERENCES

  1. 1.
    L. Tonks and I. Langmuir, Phys. Rev. 34, 876 (1929).ADSCrossRefGoogle Scholar
  2. 2.
    G. D. Hobbs and J. A. Wesson, Plasma Phys. 9, 85 (1967).ADSCrossRefGoogle Scholar
  3. 3.
    F. Taccogna, Europhys. J. 68, 7 (2014).Google Scholar
  4. 4.
    R. T. Farouki, S. Hamaguchi, and M. Dalvie, Phys. Rev. A 44, 2664 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    J. P. Sheehan, Ph.D. Dissertation (University of Wisconsin, Madison, 2012).Google Scholar
  6. 6.
    J. P. Sheehan, N. Hershkowitz, I. D. Kaganovich, H. Wang, Y. Raitses, E. V. Barnat, B. R. Weatherford, and D. Sydorenko, Phys. Rev. Lett. 111, 075002 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    D. Sydorenko, I. Kaganovich, Y. Raitses, and A. Smolyakov, Phys. Rev. 103, 145004 (2009).Google Scholar
  8. 8.
    A. I. Morozov and V. V. Savel’ev, Plasma Phys. Rep. 30, 299 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    A. I. Morozov and V. V. Savel’ev, Plasma Phys. Rep. 33, 20 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    M. D. Campanell and M. V. Umansky, Phys. Plasmas 24, 057101 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    X. Wang, J. Pilewskie, H.-W. Hsu, and M. Horányi, Geophys. Res. Lett. 43, 525 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    M. D. Campanell, Phys. Rev. E 97, 043207 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    P. C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (IOP, Bristol, 2000).CrossRefGoogle Scholar
  14. 14.
    M. D. Campanell, Phys. Rev. E 88, 033103 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations (CRC Press, Boca Raton, FL, 2003).zbMATHGoogle Scholar
  16. 16.
    P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954).ADSCrossRefGoogle Scholar
  17. 17.
    F. Greiner, T. Klinger, and A. Piel, Phys. Plasmas 2, 1810 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    T. Klinger, F. Greiner, A. Rohde, and A. Piel, Phys. Plasmas 2, 1822 (1995).ADSCrossRefGoogle Scholar
  19. 19.
    M. D. Campanell and M. V. Umansky, Plasma Sources Sci. Technol. 26, 124002 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    C. Yip, N. Hershkowitz, G. Severn, and S. D. Baalrud, Phys. Plasmas 23, 050703 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    A. J. Dessler, Rev. Geophys. 5 (1), 1 (1967).ADSCrossRefGoogle Scholar
  22. 22.
    W. M. Farrell, A. R. Poppe, M. I. Zimmerman, J. S. Halekas, G. T. Delory, and R. M. Killen, J. Geophys. Res. 118, 1114 (2013).CrossRefGoogle Scholar
  23. 23.
    J. H. Hoffman, Report NASA-CR-150946 (Texas Univ. at Dallas, Richardson, TX, 1975).Google Scholar
  24. 24.
    M. Benna, P. R. Mahaffy, J. S. Halekas, R. C. Elphic, and G. T. Delory, Geophys. Res. Lett. 42, 3723 (2015).ADSCrossRefGoogle Scholar
  25. 25.
    R. R. Hodges, Jr., J. Geophys. Res. 78, 8055 (1973).ADSCrossRefGoogle Scholar
  26. 26.
    S. A. Stern, Rev. Geophys. 37, 453 (1999).ADSCrossRefGoogle Scholar
  27. 27.
    R. Schwenn, Encyclopedia of Astronomy and Astrophysics (IOP, Bristol, 2000).Google Scholar
  28. 28.
    W. L. Fite, R. T. Brackmann, and W. R. Snow, Phys. Rev. 112, 1161 (1958).ADSCrossRefGoogle Scholar
  29. 29.
    J. A. Newbury, Eos 77, 471 (1996).ADSCrossRefGoogle Scholar
  30. 30.
    M. S. Sodha and S. K. Mishra, Phys. Plasmas 21, 093704 (2014).ADSCrossRefGoogle Scholar
  31. 31.
    J. A. Wesson, The Science of JET (JET Joint Undertaking, Abingdon, 1999), p. 56.Google Scholar
  32. 32.
    G. Z. Hao, W. W. Heidbrink, D. Liu, M. Podesta, L. Stagner, R. E. Bell, A. Bortolon, and F Scotti, Plasma Phys. Controlled Fusion 60, 025026 (2018).ADSCrossRefGoogle Scholar
  33. 33.
    N. G. Bolte, W. W. Heidbrink, D. Pace, M. V. Zeeland, and X. Che, Nucl. Fusion 56, 112023 (2016).ADSCrossRefGoogle Scholar
  34. 34.
    W. W. Dolan and W. P. Dyke, Phys. Rev. 95, 327 (1954).ADSCrossRefGoogle Scholar
  35. 35.
    M. E. Woods, B. J. Hopkins, G. F. Matthews, G. M. McCracken, P. M. Sewell, and H. Fahrang, J. Phys. D 20, 1136 (1987).ADSCrossRefGoogle Scholar
  36. 36.
    W. B. Nottingham, Phys. Rev. 49, 78 (1936).ADSCrossRefGoogle Scholar
  37. 37.
    E. W. Thomas and W. M. Stacey, Phys. Plasmas 4, 678 (1997).ADSCrossRefGoogle Scholar
  38. 38.
    O. Biblarz, R. C. Dolson, and A. M. Shorb, J. Appl. Phys. 46, 3342 (1975).ADSCrossRefGoogle Scholar
  39. 39.
    H. B. Garrett, Rev. Geophys. 19, 577 (1981).ADSCrossRefGoogle Scholar
  40. 40.
    B. F. Kraus and Y. Raitses, Phys. Plasmas 25, 030701 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations