Advertisement

Plasma Physics Reports

, Volume 45, Issue 1, pp 33–45 | Cite as

Mathematical Models of Plasma in Morozov’s Projects

  • K. V. BrushlinskiiEmail author
PLASMA DYNAMICS
  • 5 Downloads

Abstract

Mathematical models and simulations of plasma processes in scientific and technological projects proposed and, to a large extent, implemented by A.I. Morozov are reviewed. The plasmadynamic models are based on the magnetohydrodynamic (MHD) equations and their generalizations and deal with investigation of plasma flows in the channels–nozzles of the plasma thrusters. The calculations made an important contribution to the theory of an MHD analog of the de Laval nozzle and facilitated successful development and creation of a high-power quasi-stationary high-current plasma thruster. The plasmastatic models in terms of boundary-value problems with the Grad–Shafranov equation were realized in calculations of equilibrium magnetoplasma configurations in traps with current-carrying conductors embedded in plasma. Morozov also named these systems the Galatea traps. The results include calculations of the geometry, quantitative characteristics of the analyzed configurations, and a number of characteristic features in problems related to magnetic plasma confinement. General questions regarding mathematical models of interaction of reaction and diffusion processes are also discussed. The geometry of vacuum magnetic field forming magnetic surfaces for plasma confinement in traps is calculated.

Notes

REFERENCES

  1. 1.
    S. I. Braginskii, I. M. Gel’fand, and R. P. Fedorenko, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Ed. by M. A. Leontovich (Izd. Akad. Nauk SSSR, Moscow, 1958; Pergamon, New York, 1960), Vol. 4.Google Scholar
  2. 2.
    I. M. Gel’fand, M. I. Graev, N. M. Zueva, A. I. Morozov, and L. S. Solov’ev, Sov. Phys. Tech. Phys. 6, 852 (1962).Google Scholar
  3. 3.
    I. M. Gel’fand, M. I. Graev, N. M. Zueva, M. S. Mikhailova, and A. I. Morozov, Sov. Phys. Doklady 7, 223 (1962).ADSGoogle Scholar
  4. 4.
    I. M. Gel’fand, M. I. Graev, N. M. Zueva, M. S. Mikhailova, and A. I. Morozov, Sov. Phys. Doklady 8, 188 (1963).ADSGoogle Scholar
  5. 5.
    N. M. Zueva, M. S. Mikhailova, and A. I. Morozov, Sov. Phys. Doklady 8, 1185 (1964).ADSGoogle Scholar
  6. 6.
    A. I. Morozov and L. S. Solov’ev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1966), Vol. 2, p. 201.Google Scholar
  7. 7.
    N. M. Zueva and L. S. Solov’ev, Mat. Model. 10 (10), 88 (1998).Google Scholar
  8. 8.
    A. I. Morozov, in Proceedings of the International Seminar “International Cooperation in Future Space Missions Using Electric Propulsion Thrusters,” Svetlogorsk, 2005. Google Scholar
  9. 9.
    A. I. Morozov, Sov. Phys. JETP 5, 215 (1957).Google Scholar
  10. 10.
    L. A. Artsimovich, S. Yu. Luk’yanov, I. M. Podgornyi, and S. A. Chuvatin, Sov. Phys. JETP 6, 1 (1958).ADSGoogle Scholar
  11. 11.
    A. I. Morozov, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov: Introductional Volume (Nauka, Moscow, 2000), Part III, Sect. IX, p. 393 [in Russian].Google Scholar
  12. 12.
    A. I. Morozov, Physical Principles of Space Electric Propulsion Thrusters (Atomizdat, Moscow, 1978) [in Russian].Google Scholar
  13. 13.
    A. I. Morozov, Introduction to Plasma Dynamics (Fizmatlit, Moscow, 2006; CRC, Boca Raton, FL, 2012).Google Scholar
  14. 14.
    A. I. Morozov and L. S. Solov’ev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1980), Vol. 8, p. 1.Google Scholar
  15. 15.
    K. V. Brushlinskii and A. I. Morozov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1980), Vol. 8, p. 105.Google Scholar
  16. 16.
    K. V. Brushlinskii, Mathematical and Computational Problems in Magnetic Gas Dynamics (BINOM, Moscow, 2009) [in Russian]Google Scholar
  17. 17.
    G. A. D’yakonov and V. B. Tikhonov, Plasma Phys. Rep. 20, 477 (1994).ADSGoogle Scholar
  18. 18.
    K. V. Brushlinskii, N. S. Zhdanova, and E. V. Stepin, Comp. Math. Math. Phys. 58, 593 (2018).CrossRefGoogle Scholar
  19. 19.
    K. V. Brushlinskii, A. N. Kozlov, and V. S. Konovalov, Comp. Math. Math. Phys. 55, 1370 (2015).CrossRefGoogle Scholar
  20. 20.
    A. N. Kozlov and V. S. Konovalov, Commun. Nonlin. Sci. Num. Simulat. 51, 169 (2017).CrossRefGoogle Scholar
  21. 21.
    A. S. Arkhipov, V. Kim, and E. K. Sidorenko, Morozov’s Stationary Plasma Thrusters (MAI, Moscow, 2012) [in Russian].Google Scholar
  22. 22.
    A. I. Morozov and V. V. Savelyev, in Reviews of Plasma Physics, Ed. by B. B. Kadomtsev and V. D. Shafranov (Consultant Bureau, New York, 2000), Vol. 21, p. 203.Google Scholar
  23. 23.
    A. I. Morozov, Plasma Phys. Rep. 29, 235 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    V. D. Shafranov, Sov. Phys. JETP 6, 545 (1958).ADSMathSciNetGoogle Scholar
  25. 25.
    H. Grad and H. Rubin, in Proceedings of the Second United Nations Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958, p. 190.Google Scholar
  26. 26.
    A. I. Morozov, Sov. J. Plasma Phys. 18, 159 (1992).Google Scholar
  27. 27.
    K. V. Brushlinskii, N. M. Zueva, M. S. Mikhailova, A. I. Morozov, V. D. Pustovitov, and N. B. Tuzova, Plasma Phys. Rep. 20, 257 (1994).ADSGoogle Scholar
  28. 28.
    A. I. Morozov and V. V. Savel’ev, Phys. Usp. 41, 1049 (1998).ADSCrossRefGoogle Scholar
  29. 29.
    K. V. Brushlinskii and I. A. Kondrat’ev, Mat. Mod. Comp. Simul. 11 (1), 121 (2019).Google Scholar
  30. 30.
    K. V. Brushlinskii and N. A. Chmykhova, Math. Mod. Comp. Simul. 3, 9 (2011).CrossRefGoogle Scholar
  31. 31.
    K. V. Brushlinskii and N. A. Chmykhova, Vest. NIYaU MIFI 3, 40 (2014).Google Scholar
  32. 32.
    V. I. Arnol’d, Russ. Math. Surv. 18 (6), 85 (1963).CrossRefGoogle Scholar
  33. 33.
    T. A. Ratnikova, Mat. Model. 9 (8), 3 (1997).MathSciNetGoogle Scholar
  34. 34.
    E. Oran and J. P. Boris, Numerical Simulation of Reactive Flows (Elsevier, New York, 1987).zbMATHGoogle Scholar
  35. 35.
    I. V. Belova, K. V. Brushlinskii, and A. I. Morozov, Mat. Model. 4 (10), 3 (1992).MathSciNetGoogle Scholar
  36. 36.
    K. V. Brushlinskii and E. V. Styopin, J. Phys. Conf. Ser. 788, 012009 (2017).CrossRefGoogle Scholar
  37. 37.
    K. V. Brushlinskii and N. S. Zhdanova, Plasma Phys. Rep. 34, 1037 (2008).ADSCrossRefGoogle Scholar
  38. 38.
    K. V. Brushlinskii and T. A. Ratnikova, Mat. Model. 8 (2), 75 (1996).Google Scholar
  39. 39.
    K. V. Brushlinskii and T. A. Ratnikova, Plasma Phys. Rep. 9, 743 (1995).ADSGoogle Scholar
  40. 40.
    A. N. Tikhonov, A. A. Samarskii, L. A. Zaklyaz’minskii, P. P. Volosevich, L. M. Degtyarev, S. P. Kurdyumov, Yu. P. Popov, V. S. Sokolov, and A. P. Favorskii, Sov. Phys. Doklady 12, 331 (1967).ADSGoogle Scholar
  41. 41.
    K. V. Brushlinskii, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov, Ser. B, Vol. VII-1: Mathematical Modeling in Low-Temperature Plasma, Ed. by Yu. P. Popov (Yanus-K, Moscow, 2008), Part 2, p. 84 [in Russian].Google Scholar
  42. 42.
    A. N. Kozlov, Fluid Dyn. 35, 784 (2000).CrossRefGoogle Scholar
  43. 43.
    A. N. Kozlov, Plasma Phys. Controlled Fusion 59, 115004 (2017).ADSCrossRefGoogle Scholar
  44. 44.
    K. V. Brushlinskii and N. S. Zhdanova, Fluid Dyn. 39, 474 (2004).ADSCrossRefGoogle Scholar
  45. 45.
    K. V. Brushlinskii, Mathematical Foundations of Liquid, Gas, and Plasma Computational Mechanics (Intellekt, Dolgoprudnyi, 2017) [in Russian].Google Scholar
  46. 46.
    E. V. Stepin, Vest. NIYaU MIFI 3, 517 (2014).Google Scholar
  47. 47.
    K. V. Brushlinskii and E. V. Styopin, J. Phys. Conf. Ser. 937, 012007 (2017).CrossRefGoogle Scholar
  48. 48.
    A. N. Kozlov, Plasma Phys. Rep. 38, 12 (2012).ADSCrossRefGoogle Scholar
  49. 49.
    J. L. Johnson, C. R. Oberman, R. M. Kulsrud, and E. A. Frieman, Phys. Fluids 1, 281 (1958).ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    V. D. Pustovitov and V. D. Shafranov, in Reviews of Plasma Physics, Ed. by B. B. Kadomtsev (Consultants Bureau, New York, 1990), Vol. 15, p. 163.Google Scholar
  51. 51.
    L. E. Zakharov and V. D. Shafranov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich and B. B. Kadomtsev (Consultants Bureau, New York, 1986), Vol. 11, p. 153.Google Scholar
  52. 52.
    A. I. Morozov and V. D. Pustovitov, Sov. J. Plasma Phys. 17, 740 (1991).Google Scholar
  53. 53.
    V. I. Ilgisonis and Yu. I. Pozdnyakov, Plasma Phys. Rep. 30, 988 (2004).ADSCrossRefGoogle Scholar
  54. 54.
    V. Ya. Arsenin, Methods of Mathematical Physics and Special Functions (Nauka, Moscow, 1974) [in Russian].Google Scholar
  55. 55.
    K. V. Brushlinskii, A. I. Morozov, and N. B. Petrovskaya, Mat. Model. 10 (11), 29 (1998).Google Scholar
  56. 56.
    K. V. Brushlinskii, N. M. Zueva, M. S. Mikhailova, and N. B. Petrovskaya, Mat. Model. 7 (4), 73 (1995).MathSciNetGoogle Scholar
  57. 57.
    K. V. Brushlinskii and V. V. Savelyev, Mat. Model. 11 (5), 3 (1999).MathSciNetGoogle Scholar
  58. 58.
    K. V. Brushlinskii, Comp. Phys. Commun. 26, 37 (2000).ADSCrossRefGoogle Scholar
  59. 59.
    A. I. Morozov and A. G. Frank, Plasma Phys. Rep. 20, 879 (1994).ADSGoogle Scholar
  60. 60.
    A. G. Frank, Phys. Usp. 53, 941 (2010).ADSCrossRefGoogle Scholar
  61. 61.
    K. V. Brushlinskii and P. A. Ignatov, Comp. Math. Math. Phys. 50, 2071 (2010).CrossRefGoogle Scholar
  62. 62.
    K. V. Brushlinskii, A. S. Goldich, and A. S. Desyatova, Math. Mod. Comp. Simul. 5 (2), 156 (2013).CrossRefGoogle Scholar
  63. 63.
    K. V. Brushlinskii, A. S. Goldich, and N. A. Davydova, Math. Mod. Comp. Simul. 9 (1), 60 (2017).CrossRefGoogle Scholar
  64. 64.
    K. V. Brushlinskii and A. S. Goldich, Diff. Equat. 52, 845 (2016).CrossRefGoogle Scholar
  65. 65.
    K. V. Brushlinskii and A. S. Goldich, J. Phys. Conf. Ser. 788, 012008 (2017).CrossRefGoogle Scholar
  66. 66.
    K. V. Brushlinskii and I. A. Kondratyev, J. Phys. Conf. Ser. 937, 012006 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Keldysh Institute of Applied Mathematics, Russian Academy of SciencesMoscowRussia

Personalised recommendations