Advertisement

Plasma Physics Reports

, Volume 45, Issue 2, pp 121–133 | Cite as

Studies of Galatea Multipole Traps at the Russian Technoligical University MIREA

  • A. M. BishaevEmail author
  • M. B. Gavrikov
  • M. V. Kozintseva
  • V. V. Savelyev
  • P. G. Smirnov
MAGNETIC CONFINEMENT SYSTEMS
  • 4 Downloads

Abstract

Results from studies of plasma production and confinement in Galatea multipole magnetic traps at the Russian Technological University MIREA are presented. The magnetic systems of such traps are considered. It is shown that it is possible to design a system in which plasma bunches and neutral atomic beams are injected along the major radius of the torus. Different methods of plasma production in such traps are studied. It is shown that plasma production by means of an electric discharge is inefficient. The process of loading of the trap with plasma by injecting a plasma bunch is studied in detail. The parameters of the plasma bunch at which it is efficiently captured by the trap are determined. The azimuthal diamagnetic current arising after the plasma bunch is injected into the trap is measured using a Rogowski coil. The interaction of this current with the magnetic field of the trap results in the appearance of the Ampère forces confining the plasma. The plasma temperature in the trap can be determined from the measured value of the diamagnetic current. It is shown that it is possible to design a laboratory prototype of a trap with two levitating coils. The magnetic field and ion temperature in such a trap are estimated to be 0.37 T and >300 eV, respectively.

Notes

ACKNOWLEDGMENTS

This work was supported in part by the Ministry of Education and Science of the Russian Federation (project no. 3.5160.2017/BCh) and the Russian Science Foundation (project no. 16-11-10278).

REFERENCES

  1. 1.
    A. I. Morozov and V. V. Savelyev, Phys. Usp. 41, 1049 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    Y. G. Voorhies and T. Ohkawa, Phys. Fluids 11, 1572 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    S. Yoshikawa, Nucl. Fusion 13, 433 (1973).CrossRefGoogle Scholar
  4. 4.
    J. H. Schultz, G. Driscoll, D. Garner, J. Kesner, M. Mauel, J. V. Minervini, A. Smith, A. Radovinsky, G. Snichler, and A. Zhukovsky, IEEE Trans. Appl. Supercond. 11, 2004 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    M. Mauel, A. Hasegawa, and L. Chen, Nucl. Fusion 30, 2405 (1990).CrossRefGoogle Scholar
  6. 6.
    J. Kesner, A. C. Boxer, J. L. Ellswors, D. T. Garnier, A. K. Hansen, I. Karim, M. E. Mauel, and E. E. Ortiz, in Proceedings of the 21st IAEA Fusion Energy Conference, Chengdu, 2006, Paper IC/P7-7.Google Scholar
  7. 7.
    Z. Yoshikava, Y. Ogawa, J. Morikfwa, M. Furukawa, D. Saitoh, M. Hirota, D. Hori, J. Sharaish, S. Watanabe, and Y. Yano, in Proceedings of the 21st IAEA Fusion Energy Conference, Chengdu, 2006, Paper IC/P7-14.Google Scholar
  8. 8.
    D. T. Garner, M. S. Davis, J. L. Ellsworth, J. Kahn, J. Kesner, M. E. Mauel, P. Michael, B. Wilson, and P. P. Woskov, in Proceedings of the 23rd IAEA Fusion Energy Conference, Daejeon, 2010, Paper ICC/1-1Ra.Google Scholar
  9. 9.
    H. Saitoh, H. Yoshida, J. Morikawa, Y. Yano, T. Mizushima, Y. Ogawa, M. Furukawa, K. Harima, Y. Kawazura, K. Tadashi, S. Emoto, M. Kobayashi, T. Sugiura, and G. Vogel, in Proceedings of the 23rd IAEA Fusion Energy Conference, Daejeon, 2010, Paper EXC/9-14Rb.Google Scholar
  10. 10.
    A. I. Morozov, A. I. Bugrova, A. M. Bishaev, M. V. Kozintseva, A. S. Lipatov, V. I. Vasil’ev, and V. M. Strunnikov, Plasma Phys. Rep. 32, 171 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    A. I. Morozov, A. I. Bugrova, A. M. Bishaev, M. V. Kozintseva, and A. S. Lipatov, Tech. Phys. Lett. 32, 33 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    A. I. Morozov, A. I. Bugrova, A. S. Lipatov, V. K. Kharchevnikov, and M. V. Kozintseva, Tech. Phys. Lett. 26, 686 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    A. I. Morozov, A. I. Bugrova, A. S. Lipatov, and V. K. Kharchevnikov, Tech. Phys. Lett. 26, 666 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    A. I. Morozov, A. I. Bugrova, A. M. Bishaev, and V. A. Nevrovski, Tech. Phys. Lett. 25, 700 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    A. I. Morozov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 3, 57 (2000).Google Scholar
  16. 16.
    K. P. Kirdyashev, A. I. Morozov, A. I. Bugrova, and A. M. Bishaev, Tech. Phys. Lett. 28, 275 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    A. I. Morozov, A. I. Bugrova, A. M. Bishaev, S. V. Baranov, V. I. Vasil’ev, and V. M. Strunnikov, in Proceedings of the 4th International Symposium on Radiative Plasma Dynamics, Moscow, 2003, p. 4.Google Scholar
  18. 18.
    A. M. Bishaev, A. I. Bugrova, A. S. Sigov, A. I. Morozov, M. V. Kozintseva, A. S. Lipatov, V. K. Kharchevnikov, A. V. Desyatskov, G. E. Bugrov, A. A. Pushkin, and A. I. Morozov, RF Patent No. 2430493 from September 27, 2011.Google Scholar
  19. 19.
    A. M. Bishaev, A. I. Bugrova, M. V. Kozintseva, A. S. Lipatov, A. S. Sigov, and V. K. Kharchevnikov, Tech. Phys. Lett. 36, 487 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    A. M. Bishaev, G. E. Bugrov, A. V. Desyatskov, M. V. Kozintseva, P. V. Ogarkov, P. G. Sazonov, M. B. Gavrikov, and V. V. Savelyev, Vest. MGTU MIREA, No. 2, 101 (2015).Google Scholar
  21. 21.
    V. S. Strelkov, Physics Basis of Tokamak Plasma Diagnostics (MIPhI, Moscow, 2004) [in Russian].Google Scholar
  22. 22.
    M. V. Gavrikov and V. V. Savelyev, J. Math. Sci. 163, 1 (2009).MathSciNetCrossRefGoogle Scholar
  23. 23.
    E. D. Andryukhina and I. S. Shpigel’, Sov. Phys. Tech. Phys. 10, 962 (1966).Google Scholar
  24. 24.
    A. M. Bishaev, M. B. Gavrikov, M. V. Kozintseva, and V. V. Savel’ev, Tech. Phys. 63, 20 (2018).CrossRefGoogle Scholar
  25. 25.
    K. B. Abramova, A. V. Voronin, V. K. Gusev, E. E. Mukhin, Yu. V. Petrov, N. V. Sakharov, and F. V. Chernyshov, Plasma Phys. Rep. 31, 721 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    A. M. Bishaev, A. A. Bush, M. B. Gavrikov, A. I. Denisyuk, K. E. Kamentsev, M. V. Kozintseva, V. V. Savel’ev, and A. S. Sigov, Tech. Phys. 59, 940 (2014).CrossRefGoogle Scholar
  27. 27.
    I. M. Poznyak, I. N. Arkhipov, S. V. Karelov, V. M. Safronov, and D. A. Toporkov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 37, 70 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. M. Bishaev
    • 1
    Email author
  • M. B. Gavrikov
    • 2
  • M. V. Kozintseva
    • 1
  • V. V. Savelyev
    • 2
    • 3
  • P. G. Smirnov
    • 4
  1. 1.Russian Technological University MIREAMoscowRussia
  2. 2.Keldysh Institute of Applied Mathematics, Russian Academy of SciencesMoscowRussia
  3. 3.National Research Nuclear University “MEPhI”MoscowRussia
  4. 4.Research Institute of Applied Mechanics and Electrodynamics, Moscow Aviation Institute (National Research University)MoscowRussia

Personalised recommendations