Advertisement

Plasma Physics Reports

, Volume 44, Issue 12, pp 1104–1113 | Cite as

Investigation of the Influence of Injection Parameters on Particles Motion in Electric and Magnetic Fields for Designing Plasma Separation Technique

  • V. P. Smirnov
  • A. V. Gavrikov
  • V. S. Sidorov
  • V. P. Tarakanov
  • R. A. TimirkhanovEmail author
  • S. D. Kuzmichev
  • R. A. Usmanov
  • N. A. Vorona
PLASMA DIAGNOSTICS
  • 6 Downloads

Abstract

The paper continues studies of the capabilities of plasma treatment of spent nuclear fuel and radioactive waste. The study is devoted to the problem of integration of the plasma source and separator, while the initial conditions of the substance input are considered by taking into account the possibilities of the process implementation. The results of calculations are presented in the one-particle approximation of 3D trajectories of the substance ions simulating the components of spent nuclear fuel. The calculations have been performed for the magnetic field generated by the coils and for the model configurations of the electric field approximated for the experimental capabilities. The electric potential configurations and the initial conditions pertinent to plasma injection along the magnetic field have been proposed, which allow efficiently separating singly charged ions of model substances characterized by masses of 150 and 240 amu, energies in the range of 0.02–20 eV, and an initial angular spread in velocities of 60°. The distance between the separated beams with different masses is found to be 10 cm for the characteristic separator size of 1 m.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 14-29-00231.

REFERENCES

  1. 1.
    V. A. Zhil’tsov, V. M. Kulygin, N. N. Semashko, A. A. Skovoroda, V. P. Smirnov, A. V. Timofeev, E. G. Kudryavtsev, V. I. Rachkov, and V. V. Orlov, At. Energ. 101, 302 (2006).Google Scholar
  2. 2.
    Reprocessing and Recycling of Spent Nuclear Fuel, Ed. by R. Taylor (WHP, Cambridge, 2015).Google Scholar
  3. 3.
    A. Y. Shadrin, K. N. Dvoeglazov, A. G. Maslennikov, V. A. Kashcheev, S. G. Tret’yakova, O. V. Shmidt, V. L. Vidanov, O. A. Ustinov, V. I. Volk, S. N. Veselov, and V. S. Ishunin, Radiochemistry 58, 271 (2016).CrossRefGoogle Scholar
  4. 4.
    Hansoo Lee, Geun-IL Park, Jae-Won Lee, Kweon-Ho Kang, Jin-Mok Hur, Jeong-Guk Kim, Seungwoo Paek, In-Tae Kim, and IL-Je Cho, Sci. Technol. Nucl. Instal. 2013, 343492 (2013).CrossRefGoogle Scholar
  5. 5.
    N. A. Vorona, A. V. Gavrikov, A. A. Samokhin, V. P. Smirnov, and Yu. S. Khomyakov, Yad. Fiz. Inzhinir., No. 11−12, 944 (2014).Google Scholar
  6. 6.
    E. I. Skibenko, Yu. V. Kovtun, A. M. Egorov, and V. B. Yuferov, Vopr. At. Nauki Tekh., Ser. Fiz. Radiat. Povrezh. Radiat. Materialoved., No. 2, 141 (2011).Google Scholar
  7. 7.
    Yu. V. Korobkin, N. V. Lebedev, and V. L. Paperny, Tech. Phys. Lett. 38, 254 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    R. Freeman, S. Agnew, F. Anderegg, B. Cluggish, J. Gilleland, R. Isler, A. Litvak, R. Miller, R. O’Neill, T. Ohkawa, S. Pronko, S. Putvinski, L. Sevier, A. Sibley, K. Umstadter, T. Wade, and D. Winslow, in Proceedings of the 15th Topical Conference on Radio Frequency Power in Plasmas, Moran, WY, 2003, Ed. by C. B. Forest, AIP Conf. Proc. 694, 403 (2003).Google Scholar
  9. 9.
    V. M. Bardakov, G. N. Kichigin, N. A. Strokin, and E. O. Tsaregorodtsev, Tech. Phys. 55, 1504 (2010).CrossRefGoogle Scholar
  10. 10.
    D. A. Dolgolenko and Yu. A. Muromkin, Phys. Usp. 60, 994 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    V. P. Smirnov, A. A. Samokhin, N. A. Vorona, and A. V. Gavrikov, Plasma Phys. Rep. 39, 456 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    A. Gavrikov, S. Kuzmichev, G. Lizyakin, V. Smirnov, R. Timirkhanov, R. Usmanov, and N. Vorona, in Proceedings of the 22nd Topical Conference on Radio-Frequency Power in Plasmas, Aix-en-Provence, 2017, Ed. by J. Hillairet, EPJ Web Conf. 157, 3062 (2017).Google Scholar
  13. 13.
    G. D. Liziakin, A. V. Gavrikov, Y. A. Murzaev, R. A. Usmanov, and V. P. Smirnov, Phys. Plasmas 23, 123502 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    G. Liziakin, A. Gavrikov, R. Usmanov, R. Timirkhanov, and V. Smirnov, AIP Adv. 7, 125108 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    R. Kh. Amirov, N. A. Vorona, A. V. Gavrikov, G. D. Lizyakin, V. P. Polishchuk, I. S. Samoilov, V. P. Smirnov, R. A. Usmanov, and I. M. Yartsev, Plasma Phys. Rep. 41, 808 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    R. A. Usmanov, R. K. Amirov, A. V. Gavrikov, G. D. Liziakin, V. P. Polistchook, I. S. Samoylov, V. P. Smirnov, N. A. Vorona, and I. M. Yartsev, Phys. Plasmas 25, 063524 (2018).ADSCrossRefGoogle Scholar
  17. 17.
    N. N. Antonov, N. A. Vorona, A. V. Gavrikov, A. A. Samokhin, and V. P. Smirnov, Tech. Phys. 61, 180 (2016).CrossRefGoogle Scholar
  18. 18.
    N. N. Antonov, A. V. Gavrikov, V. P. Smirnov, G. D. Liziakin, R. A. Usmanov, N. A. Vorona, and R. A. Timirkhanov, J. Phys. Conf. Ser. 946, 012171 (2018).CrossRefGoogle Scholar
  19. 19.
    N. N. Antonov, S. N. Zhabin, A. V. Gavrikov, V. P. Smir-nov, and R. A. Timirkhanov, Prikl. Fiz., No. 5, 70 (2016).Google Scholar
  20. 20.
    V. P. Tarakanov, User’s Manual for Code KARAT (Berkley Research Associates, Springfield, VA, 1992).Google Scholar
  21. 21.
    N. Antonov, G. Liziakin, R. Usmanov, Y. Murzaev, A. Gavrikov, and V. Smirnov, in Proceedings of the IX International Conference on Plasma Physics and Plasma Technology, Minsk, 2018, Ed. by N. V. Tarasenko, A. A. Nevar, and N. N. Tarasenka (Kovcheg, Minsk, 2018), p. 331.Google Scholar
  22. 22.
    H. Conrads and M. Schmidt, Plasma Sources Sci. Technol. 9, 441 (2000).ADSCrossRefGoogle Scholar
  23. 23.
    C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (CRC Press, Boca Raton, FL, 1991).CrossRefGoogle Scholar
  24. 24.
    A. V. Gavrikov, V. S. Sidorov, V. P. Smirnov, and V. P. Tarakanov, J. Phys. Conf. Ser. 774, 012197 (2016).CrossRefGoogle Scholar
  25. 25.
    A. V. Gavrikov, V. S. Sidorov, V. P. Smirnov, and V. P. Tarakanov, J. Phys. Conf. Ser. 946, 012172 (2018).CrossRefGoogle Scholar
  26. 26.
    R. K. Amirov, N. A. Vorona, A. V. Gavrikov, G. D. Liziakin, V. P. Polistchook, I. S. Samoylov, V. P. Smir-nov, R. A. Usmanov, and I. M. Yartsev, J. Phys. Conf. Ser. 830, 012059 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. P. Smirnov
    • 1
  • A. V. Gavrikov
    • 1
  • V. S. Sidorov
    • 1
  • V. P. Tarakanov
    • 1
  • R. A. Timirkhanov
    • 1
    Email author
  • S. D. Kuzmichev
    • 1
    • 2
  • R. A. Usmanov
    • 1
    • 2
  • N. A. Vorona
    • 1
  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations