Plasma Physics Reports

, Volume 44, Issue 12, pp 1126–1134 | Cite as

Hall Effect in Laboratory and Space Current Sheets

  • E. V. YushkovEmail author
  • A. G. FrankEmail author
  • A. V. Artemyev
  • A. A. Petrukovich
  • R. Nakamura


The role of the Hall effect in the formation of thin current sheets (CSs) is analyzed by comparing results of laboratory and satellite experiments. In spite of the strong difference in the plasma parameters, both laboratory and space CSs are characterized by the hot ion component and cold isotropic electron component. Such a relation between the ion and electron components would have to guarantee the predominant contribution of the ion diamagnetic drift current to the total current density. However, the Cluster spacecraft observations of thin CSs in the Earth’s magnetotail have revealed the predominance of a strong electron (rather than ion) current. This may be due to the Hall effect, which causes generation of electric fields, which redistribute the CS currents in favor of the electron currents at the expense of the ion currents. Observations demonstrate that the thinner the CS, the stronger this effect. A similar tendency was also observed in laboratory experiments on CS formation in plasma with ions of different mass, which made it possible to vary the CS relative thickness and monitor the consequences of the Hall effect. Comparison of results of satellite and laboratory experiments indicates that the Hall effect plays an important role in the formation of thin CSs in both magnetospheric and laboratory plasmas.



This work was performed in the framework of the Program “Fundamental Problems of Dynamics, Confinement, and Heating of Plasma in Three-Dimensional Magnetic Configurations” (State Contract no. 0024-2018-0045). This work was also supported in part by the Department of Physical Sciences of the Russian Academy of Sciences under the Fundamental Research Program no. III.2 “Dynamics of Rarefied Plasma in Space and Laboratory” and the Russian Foundation for Basic Research (project no. 15-02-03644). The work by R. Nakamura was supported by the Austrian Science Fund (project no. FWF I2016-N20).


  1. 1.
    D. N. Baker, T. I. Pulkkinen, V. Angelopoulos, W. Baumjohann, and R. L. McPherron, J. Geophys. Res. 101, 12975 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    E. N. Parker, Spontaneous Current Sheets in Magnetic Fields (Oxford Univ. Press, Oxford, 1994).Google Scholar
  3. 3.
    A. Petrukovich, A. Artemyev, and R. Nakamura, in Magnetic Reconnection: Concepts and Applications (Astrophysics and Space Science, Vol. 427), Ed. by W. Gonzalez and E. Parker (Springer International Publishing Switzerland, Heidelberg, 2016), p. 277.Google Scholar
  4. 4.
    V. A. Sergeev, V. Angelopoulos, and R. Nakamura, Geophys. Rev. Lett. 39, 5101 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations, Ed. by J. Birn and E. R. Priest (Oxford Univ. Press, New York, 2007).Google Scholar
  6. 6.
    A. T. Y. Lui, Space Sci. Rev. 113, 127 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    R. A. Treumann and W. Baumjohann, Front. Phys. 1, 31 (2013).CrossRefGoogle Scholar
  8. 8.
    M. Yamada, R. Kulsrud, and H. Ji, Rev. Modern Phys. 82, 603 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    V. Angelopoulos, J. P. McFadden, D. Larson, C. W. Carlson, S. B. Mende, H. Frey, T. Phan, D. G. Sibeck, K. Glassmeier, U. Auster, E. Donovan, I. R. Mann, I. J. Rae, C. T. Russell, A. Runov, et al., Science 321, 931 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    C. P. Escoubet, M. Fehringer, and M. Goldstein, Ann. Geophys. 19, 1197 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    M. L. Goldstein, P. Escoubet, K.-J. Hwang, D. E. Wen-del, A.-F. Vinas, S. F. Fung, S. Perri, S. Servidio, J. S. Pickett, G. K. Parks, F. Sahraoui, C. Gurgiolo, W. Matthaeus, and J. M. Weygand, J. Plasma Phys. 81, 325810301 (2015).CrossRefGoogle Scholar
  12. 12.
    A. V. Artemyev, W. Baumjohann, A. A. Petrukovich, R. Nakamura, I. Dandouras, and A. Fazakerley, Ann. Geophys. 29, 2253 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    C. Wang, M. Gkioulidou, L. R. Lyons, and V. Angelopoulos, J. Geophys. Res. 117, A08215 (2012).ADSGoogle Scholar
  14. 14.
    G. R. Burkhart, J. F. Drake, P. B. Dusenbery, and T. W. Speiser, J. Geophys. Res. 97, 13799 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    J. W. Eastwood, Planet. Space Sci. 20, 1555 (1972).ADSCrossRefGoogle Scholar
  16. 16.
    O. V. Mingalev, I. V. Mingalev, K. V. Malova, and L. M. Zelenyi, Plasma Phys. Rep. 33, 942 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    M. I. Sitnov, M. Swisdak, P. N. Guzdar, and A. Runov, J. Geophys. Res. 111, 8204 (2006).CrossRefGoogle Scholar
  18. 18.
    L. M. Zelenyi, H. V. Malova, A. V. Artemyev, V. Y. Po-pov, and A. A. Petrukovich, Plasma Phys. Rep. 37, 118 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    A. V. Artemyev, A. A. Petrukovich, L. M. Zelenyi, R. Nakamura, H. V. Malova, and V. Y. Popov, Ann. Geophys. 27, 4075 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    A. Runov, V. A. Sergeev, R. Nakamura, W. Baumjohann, S. Apatenkov, Y. Asano, T. Takada, M. Volwerk, Z. Voros, T. L. Zhang, J. Sauvaud, H. Reme, and A. Balogh, Ann. Geophys. 24, 247 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    A. A. Petrukovich, A. V. Artemyev, I. Y. Vasko, R. Nakamura, and L. M. Zelenyi, Space Sci. Rev. 188, 311337 (2015).CrossRefGoogle Scholar
  22. 22.
    R. Nakamura, W. Baumjohann, A. Runov, and Y. Asano, Space Sci. Rev. 122, 29 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    R. Wang, Q. Lu, R. Nakamura, C. Huang, A. Du, F. Guo, W. Teh, M. Wu, S. Lu, and S. Wang, Nature Phys. 12, 263 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    I. Y. Vasko, A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi, Ann. Geophys. 32, 133 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    J. R. Wygant, C. A. Cattell, R. Lysak, Y. Song, J. Dom-beck, J. McFadden, F. S. Mozer, C. W. Carlson, G. Parks, E. A. Lucek, A. Balogh, M. Andre, H. Reme, M. Hesse, and C. Mouikis, J. Geophys. Res. 110, 9206 (2005).CrossRefGoogle Scholar
  26. 26.
    D. B. Korovinskiy, V. S. Semenov, N. V. Erkaev, A. V. Divin, and H. K. Biernat, J. Geophys. Res. 113, 4205 (2008).CrossRefGoogle Scholar
  27. 27.
    S. Lu, Y. Lin, V. Angelopoulos, A. V. Artemyev, P. L. Pritchett, Q. Lu, and X. Y. Wang, J. Geophys. Res. 121, 11 (2016).Google Scholar
  28. 28.
    K. Schindler and J. Birn, J. Geophys. Res. 107, 1193 (2002).CrossRefGoogle Scholar
  29. 29.
    E. Tsai, A. V. Artemyev, and V. Angelopoulos, Phys. Plasmas 24, 012908 (2017).ADSCrossRefGoogle Scholar
  30. 30.
    P. H. Yoon and A. T. Y. Lui, J. Geophys. Res. 109, 11213 (2004).CrossRefGoogle Scholar
  31. 31.
    L. M. Zelenyi, A. V. Artemyev, and A. A. Petrukovich, Geophys. Rev. Lett. 37, 6105 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    A. V. Artemyev and L. M. Zelenyi, Space Sci. Rev. 178, 419 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    S. Yu. Bogdanov, N. P. Kyrie, V. S. Markov, and A. G. Frank, JETP Lett. 71, 53 (2000).ADSCrossRefGoogle Scholar
  34. 34.
    A. G. Frank, Phys. Usp. 53, 941 (2010).ADSCrossRefGoogle Scholar
  35. 35.
    M. Yamada, H. Ji, S. Hsu, T. Carter, R. Kulsrud, and F. Trintchouk, Phys. Plasmas 7, 1781 (2000).ADSCrossRefGoogle Scholar
  36. 36.
    M. Yamada, J. Yoo, and C. E. Myers, Phys. Plasmas 23, 055402 (2016).ADSCrossRefGoogle Scholar
  37. 37.
    A. G. Frank, Plasma Phys. Controlled Fusion 41, A687 (1999).ADSCrossRefGoogle Scholar
  38. 38.
    A. V. Artemyev, A. A. Petrukovich, A. G. Frank, R. Nakamura, and L. M. Zelenyi, J. Geophys. Res. 118, 2789 (2013).CrossRefGoogle Scholar
  39. 39.
    A. G. Frank, A. V. Artemyev, and L. M. Zelenyi, JETP 123, 699 (2016).ADSCrossRefGoogle Scholar
  40. 40.
    E. V. Yushkov, A. G. Frank, A. V. Artemyev, A. A. Petrukovich, and I. Y. Vasko, Plasma Phys. Rep. 41, 71 (2015).ADSCrossRefGoogle Scholar
  41. 41.
    L. M. Zelenyi, A. G. Frank, A. V. Artemyev, A. A. Petrukovich, and R. Nakamura, Plasma Phys. Controlled Fusion 58, 054002 (2016).ADSCrossRefGoogle Scholar
  42. 42.
    A. G. Frank, S. G. Bugrov, and V. S. Markov, Phys. Plasmas 15, 092102 (2008).ADSCrossRefGoogle Scholar
  43. 43.
    A. Balogh, C. M. Carr, M. H. Acuna, M. W. Dunlop, T. J. Beek, P. Brown, K. Fornacon, E. Georgescu, K. Glassmeier, J. Harris, G. Musmann, T. Oddy, and K. Schwingenschuh, Ann. Geophys. 19, 1207 (2001).ADSCrossRefGoogle Scholar
  44. 44.
    H. Reme, C. Aoustin, J. M. Bosqued, I. Dandouras, B. Lavraud, J. A. Sauvaud, A. Barthe, J. Bouyssou, T. Camus, O. Coeur-Joly, A. Cros, J. Cuvilo, F. Ducay, Y. Garbarowitz, J. L. Medale, et al., Ann. Geophys. 19, 1303 (2001).ADSCrossRefGoogle Scholar
  45. 45.
    Analysis Methods for Multi-Spacecraft Data, Ed. by G. Paschmann and P. W. Daly (ESA, Noordwijk, 1998).Google Scholar
  46. 46.
    A. Runov, V. A. Sergeev, R. Nakamura, W. Baumjohann, T. L. Zhang, Y. Asano, M. Volwerk, Z. Voros, A. Balogh, and H. Reme, Planet. Space Sci. 53, 237 (2005).ADSCrossRefGoogle Scholar
  47. 47.
    M. Hesse, D. Winske, and J. Birn, Phys. Scr. 74, 63 (1998).CrossRefGoogle Scholar
  48. 48.
    P. L. Pritchett and F. V. Coroniti, J. Geophys. Res. 100, 23551 (1995).ADSCrossRefGoogle Scholar
  49. 49.
    A. G. Frank, G. V. Ostrovskaya, E. V. Yushkov, A. V. Artemyev, and S. N. Satunin, Cosmic Res. 55, 46 (2017).ADSCrossRefGoogle Scholar
  50. 50.
    A. G. Frank, S. Y. Bogdanov, V. S. Markov, G. V. Ostrovskaya, and G. V. Dreiden, Phys. Plasmas 12, 052316 (2005).ADSCrossRefGoogle Scholar
  51. 51.
    N. P. Kyrie, V. S. Markov, A. G. Frank, D. G. Vasilkov, and E. V. Voronova, Plasma Phys. Rep. 42, 549 (2016).ADSCrossRefGoogle Scholar
  52. 52.
    G. V. Ostrovskaya and A. G. Frank, Plasma Phys. Rep. 40, 21 (2014).ADSCrossRefGoogle Scholar
  53. 53.
    G. V. Ostrovskaya, V. S. Markov, and A. G. Frank, Plasma Phys. Rep. 42, 1 (2016).ADSCrossRefGoogle Scholar
  54. 54.
    G. S. Voronov, N. P. Kyrie, V. S. Markov, G. V. Ostrovskaya, A. G. Frank, Plasma Phys. Rep. 34, 999 (2008).ADSCrossRefGoogle Scholar
  55. 55.
    A. G. Frank, N. P. Kyrie, and S. N. Satunin, Phys. Plasmas 18, 111209 (2011).ADSCrossRefGoogle Scholar
  56. 56.
    G. Paschmann, M. Oieroset, and T. Phan, Space Sci. Rev. 178, 385 (2013).ADSCrossRefGoogle Scholar
  57. 57.
    A. A. Petrukovich, J. Geophys. Res. 116, 7217 (2011).CrossRefGoogle Scholar
  58. 58.
    D. T. Garnier, M. E. Mauel, T. M. Roberts, J. Kesner, and P. P. Woskov, Phys. Plasmas 24, 012506 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Space Research Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow State University, Faculty of PhysicsMoscowRussia
  3. 3.Prokhorov General Physics Institute of the Russian Academy of SciencesMoscowRussia
  4. 4.Institute of Geophysics and Planetary PhysicsUCLAUSA
  5. 5.Space Research InstituteAAS, GrazAustria

Personalised recommendations