Advertisement

Plasma Physics Reports

, Volume 44, Issue 12, pp 1135–1139 | Cite as

Charge of a Particle-Absorbing Sphere in Collisionless Plasma by the Results of a Direct Numerical Experiment

  • V. L. Krasovsky
  • A. A. Kiselyov
SPACE PLASMA

Abstract

The process of charging of a spherical body absorbing plasma electrons and ions is modeled by directly solving the Vlasov–Poisson equations. The main goal of the numerical experiment is to determine the sphere charge in a stable steady state established on long times in perturbed plasma. Special attention is paid to the contribution of trapped ions moving in finite orbits to the screening of a charged body. The charge of the trapped particle cloud is determined as a function of the body size in a wide parameter range of an initially unperturbed plasma.

Notes

ACKNOWLEDGMENTS

This work was supported by the Presidium of the Russian Academy of Sciences, program OFN III-2.

REFERENCES

  1. 1.
    V. L. Krasovsky, A. A. Kiselyov, and M. S. Dolgonosov, Plasma Phys. Rep. 43, 44 (2017).ADSCrossRefGoogle Scholar
  2. 2.
    J. Allen, R. Boyd, and P. Reynolds, Proc. Phys. Soc. London B 70, 297 (1957).ADSCrossRefGoogle Scholar
  3. 3.
    I. B. Bernstein and I. N. Rabinowitz, Phys. Fluids 2, 112 (1959).ADSCrossRefGoogle Scholar
  4. 4.
    A. V. Gurevich, Geomagn. Aeron. 4, 3 (1964).ADSGoogle Scholar
  5. 5.
    Ya. L. Al’pert, A. V. Gurevich, and L. P. Pitaevskii, Space Physics with Artificial Sattelites (Nauka, Moscow, 1964; Consultants Bureau, New York, 1965).Google Scholar
  6. 6.
    Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).Google Scholar
  7. 7.
    J. E. Daugherty, R. K. Porteous, M. D. Kilgore, and D. B. Graves, J. Appl. Phys. 72, 3934 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    J. E. Allen, Phys. Scr. 45, 497 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    S. J. Choi and M. J. Kushner, IEEE Trans. Plasma Sci. 22, 138 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Zobnin, A. P. Nefedov, V. A. Sinel’shchikov, and V. E. Fortov, JETP 91, 483 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    S. A. Maiorov, Plasma Phys. Rep. 31, 690 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    Complex and Dusty Plasmas, Ed. by V. E. Fortov and G. E. Morfill (CRC, Boca Raton, FL, 2010).Google Scholar
  13. 13.
    H. Mott-Smith and I. Langmuir, Phys. Rev. 28, 727 (1926).ADSCrossRefGoogle Scholar
  14. 14.
    I. Langmuir, Phys. Rev. 34, 876 (1929).ADSCrossRefGoogle Scholar
  15. 15.
    A. A. Kiselyov, M. S. Dolgonosov, and V. L. Krasovsky, Doklady Phys. 59, 209 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    A. A. Kiselyov, M. S. Dolgonosov, and V. L. Krasovsky, Europhys. Lett. 111, 15001 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    V. D. Shafranov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1967), Vol. 3, p. 1.Google Scholar
  18. 18.
    V. L. Krasovsky, J. Phys. Soc. Jpn. 85, 034501 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    V. L. Krasovsky, J. Korean Phys. Soc. 70, 891 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    V. L. Krasovsky and A. A. Kiselyov, IEEE Trans. Plasma Sci. 46, 631 (2018).ADSCrossRefGoogle Scholar
  21. 21.
    E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).Google Scholar
  22. 22.
    V. L. Krasovsky, Plasma Phys. Rep. 39, 504 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Space Research Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations