Advertisement

Plasma Physics Reports

, Volume 44, Issue 11, pp 1066–1075 | Cite as

Ignition of Hydrocarbon–Oxygen Mixtures by Means of a Nanosecond Surface Dielectric Barrier Discharge

  • E. M. Anokhin
  • S. V. Kindysheva
  • N. L. AleksandrovEmail author
Low-Temperature Plasma

Abstract

Ignition of hydrocarbon–oxygen mixtures by means of a nanosecond surface dielectric barrier discharge (NSDBD) was studied experimentally. The propagation velocity of the flame wave and the ignition delay time in mixtures of oxygen with methane, ethane, ethylene, and dimethyl ether were measured using a high-speed camera. The experiments were carried out at room temperature and gas mixture pressures in the range of 0.75–1.25 atm. It is shown that, for all hydrocarbons under study, the flame velocity decreases with reducing pressure and stoichiometric ratio, as well as when the mixture is diluted with molecular nitrogen. Theoretical analysis of the processes in the NSDBD plasma and measurements of the flame velocity in hydrocarbon-containing mixtures without plasma agree qualitatively with the measurement results, except for the increasing dependence of the flame velocity on the pressure, which is decreasing in experiments without a discharge plasma.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskaia, U. Kortshagen, J.-P. Boeuf, T. J. Sommerer, M. J. Kushner, U. Czarnetzki, et al., J. Phys. D 45, 253001 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    S. M. Starikovskaia, J. Phys. D 39, R265 (2006).Google Scholar
  3. 3.
    N. A. Popov, High Temp. 45, 261 (2007).CrossRefGoogle Scholar
  4. 4.
    I. V. Adamovich, I. Choi, N. Jiang, J.-H. Kim, S. Keshav, W. R. Lempert, E. Mintusov, M. Nishihara, M. Samimy, and M. Uddi, Plasma Sources Sci. Technol. 18, 034018 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    A. Starikovskiy and N. Aleksandrov, Progr. Energy Comb. Sci. 39, 61 (2013).CrossRefGoogle Scholar
  6. 6.
    S. M. Starikovskaia, J. Phys. D 47, 353001 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    I. V. Adamovich and W. R. Lempert, Plasma Phys. Controlled Fusion 57, 014001 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Ju and W. Sun, Progr. Energy Comb. Sci. 48, 21 (2015).CrossRefGoogle Scholar
  9. 9.
    T. C. Corke, M. L. Post, and D. M. Orlov, Exp. Fluids 46, 1 (2009).CrossRefGoogle Scholar
  10. 10.
    E. J. Moreau, Phys. D 40, 605 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    A. Starikovskiy and N. Aleksandrov, in Aeronautics and Astronautics, Ed. by M. Mulder (InTech, Rijeka, 2011) p. 55.Google Scholar
  12. 12.
    I. N. Kosarev, V. I. Khorunzhenko, E. I. Mintoussov, P. N. Sagulenko, N. A. Popov, and S. M. Starikovskaia, Plasma Sources Sci. Technol. 21, 045012 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    E. M. Anokhin, D. N. Kuzmenko, S. V. Kindysheva, V. R. Soloviev, and N. L. Aleksandrov, Plasma Sources Sci. Technol. 24, 045014 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    A. Starikovskiy, A. Rakitin, G. Correale, A. Nikipelov, T. Urushihara, and T. Shiraishi, in Proceedings of the 50th Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, 2012, Paper AIAA-2012-0828.Google Scholar
  15. 15.
    M. A. Boumehdi, S. A. Stapanyan, P. Desgroux, G. Vanhove, and S. M. Starikovskaia, Combust. Flame 162, 1336 (2015).CrossRefGoogle Scholar
  16. 16.
    S. A. Stepanyan, A. Yu. Starikovskiy, N. A. Popov, and S. M. Starikovsaia, Plasma Sources Sci. Technol. 23, 045003 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    S. A. Shcherbanev, N. A. Popov, and S. M. Starikovskaia, Combust. Flame 176, 272 (2017).CrossRefGoogle Scholar
  18. 18.
    T. A. Semelsberger, R. L. Borup, and H. L. Greene, J. Power Sources 156, 497 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    A. Yu. Starikovskii, A. A. Nikipelov, M. M. Nudnova, and D. V. Roupassov, Plasma Sourses Sci. Technol. 18, 034015 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    M. M. Nudnova, IEEE Trans. Plasma Sci. 39, 2164 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    M. M. Nudnova, S. V. Kindysheva, N. L. Aleksandrov, and A. Yu. Starikovskii, Phil. Trans. R. Soc. A 373, 20140330 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    V. R. Soloviev and V. M. Krivtsov, in Proceedings of the 6th European Conference on Aeronautics and Space Sciences, Krakow, 2015.Google Scholar
  23. 23.
    V. R. Solov’ev, A. M. Konchakov, V. M. Krivtsov, and N. L. Aleksandrov, Plasma Phys. Rep. 34, 594 (2008).ADSCrossRefGoogle Scholar
  24. 24.
    V. R. Soloviev and V. M. Krivtsov, J. Phys. D 42, 125208 (2009).ADSCrossRefGoogle Scholar
  25. 25.
    G. J. H. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    A. A. Ionin, I. V. Kochetov, A. P. Napartovich, and N. N. Yuryshev, J. Phys. D 40, R25 (2007).Google Scholar
  27. 27.
    M. Hayashi, in Swarm Studies and Inelastic Electron− Molecule Collisions, Ed. by L. C. Pitchford, B. V. McCoy, A. Chutjian, and S. Tajmar (Springer-Verlag, New York, 1987), p. 167.Google Scholar
  28. 28.
    http://garfield.web.cern.ch/garfield/help/garfield_ 41.html.Google Scholar
  29. 29.
    J. Warnatz, U. Maas, and R. Dibble, Combustion (Springer, Berlin, 2001).CrossRefzbMATHGoogle Scholar
  30. 30.
    A. A. Konnov, in Proceedings of the 7th European Combustion Meeting, Budapest, 2015.Google Scholar
  31. 31.
    Y. L. Wang, A. T. Holley, C. Ji, F. N. Egolfopoulos, T. T. Tsotsis, and H. J. Curran, Proc. Combust. Inst. 32, 1035 (2009).CrossRefGoogle Scholar
  32. 32.
    P. Dirrenberger, Energy Fuels 25, 3875 (2011).CrossRefGoogle Scholar
  33. 33.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, Oxford, 1987).Google Scholar
  34. 34.
    Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. M. Anokhin
    • 1
  • S. V. Kindysheva
    • 1
  • N. L. Aleksandrov
    • 1
    Email author
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia

Personalised recommendations