Advertisement

Plasma Physics Reports

, Volume 43, Issue 3, pp 381–392 | Cite as

High-frequency underwater plasma discharge application in antibacterial activity

  • M. W. Ahmed
  • S. Choi
  • K. Lyakhov
  • U. Shaislamov
  • R. K. Mongre
  • D. K. Jeong
  • R. Suresh
  • H. J. LeeEmail author
Low-Temperature Plasma

Abstract

Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. C. Hong, H. J. Park, B. J. Lee, W. S. Kang, and H. S. Uhm, Phys. Plasmas 17, 053501 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    R. Zhang, L. Wang, Y. Wu, Z. Guan, and Z. Jia, IEEE Trans. Plasma Sci. 34, 1370 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    C. H. Wang, Y. Wu, and G. F. Li, J. Electrostat. 66, 71 (2008).CrossRefGoogle Scholar
  4. 4.
    D. Ziuzina, S. Patil, P. J. Cullen, K. M. Keener, and P. Bourke, J. Appl. Microbiol. 114, 778 (2013).CrossRefGoogle Scholar
  5. 5.
    P. Sunka, V. Babicky, M. Clupek, P. Lukes, M. Simek, J. Schmidt, and M. Cernak, Plasma Sources Sci. Technol. 8, 258 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    I. Z. Kozakova, Ph. D. Thesis (Brno University of Technology, Brno, 2011).Google Scholar
  7. 7.
    M. Sato, Int. J. Plasma Environ. Sci. Technol. 3, 8 (2009).Google Scholar
  8. 8.
    S. H. R. Hosseini, S. Iwasaki, T. Sakugawa, and H. Akiyama, J. Korean Phys. Soc. 59, 3526 (2011).CrossRefGoogle Scholar
  9. 9.
    M. W. Ahmed, J. K. Yang, Y. S. Mok, and H. J. Lee, J. Korean Phys. Soc. 65, 1404 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    T. Izdebski, M. Dors, and J. Mizeraczyk, Eur. Chem. Bull. 3, 811 (2014).Google Scholar
  11. 11.
    B. Eliasson, M. Hirth, and U. Kogelschatz, J. Phys. D 20, 142 (1987).CrossRefGoogle Scholar
  12. 12.
    R. Munter, Proc. Estonian Acad. Sci. Chem. 50, 59 (2001).Google Scholar
  13. 13.
    T. Sakoda, Y. Matsuda, and S. Baba, J. Plasma Fusion Res. SERIES 8, 623 (2009).Google Scholar
  14. 14.
    S. Pekarek, Acta Polytech. 43, 47 (2003).Google Scholar
  15. 15.
    A. Yamatake, H. Katayama, K. Yasuoka, and S. Ishii, Int. J. Plasma Environ. Sci. Technol. 1, 91 (2007).Google Scholar
  16. 16.
    M. Magureanu, C. Bradu, D. Piroi, N. B. Mandache, and V. Parvulescu, Plasma Chem. Plasma Proc. 33, 51 (2013).CrossRefGoogle Scholar
  17. 17.
    B. R. Locke, M. Sato, P. Sunka, M. R. Hoffmann, and J. S. Chang, Ind. Eng. Chem. Res. 45, 882 (2006).CrossRefGoogle Scholar
  18. 18.
    P. Lukes, M. Clupek, V. Babicky, V. Janda, and P. Sunka, J. Phys. D 38, 409 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    J.-T. Marois-Fiset, A. Carabin, A. Lavoie, and C. C. Dorea, Appl. Environ. Microbiol. 79, 2107 (2013).CrossRefGoogle Scholar
  20. 20.
    R. P. Joshi and S. M. Thagard. Plasma Chem. Plasma Process. 33, 1 (2013).CrossRefGoogle Scholar
  21. 21.
    S. J. Kim, T. H. Chung, S. H. Bae, and S. H. Leem, Plasma Process. Polym. 6, 676 (2009).CrossRefGoogle Scholar
  22. 22.
    M. Pekker and M. N. Shneider, J. Phys. D 48, 424009 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    S. Reuter, J. Winter, S.Iseni, A. S. Bleker, M. Dunnbier, K. Masur, K. Wende, and K. D. Weltmann, IEEE Trans. Plasma Sci. 43, 3185 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    S. Wani, J. K. Maker, J. R. Thompson, J. Barnes, and I. Singleton, Agriculture 5, 155 (2015).CrossRefGoogle Scholar
  25. 25.
    A. P. Schuch, R. da S. Galhardo, K. M. de L. Bessa, N. J. Schuch, and C. F. M. Menck, Photochem. Photobiol. Sci. 8, 111 (2009).CrossRefGoogle Scholar
  26. 26.
    R. P. Sinha, M. Dautz, and D. P. Hader, Acta Protozool. 40, 187 (2001).Google Scholar
  27. 27.
    M. Davoudi, T. Vakili, A. Absalan, M. H. Ehrampoushand, and M. T. Ghaneian, Middle-East J. Sci. Res. 13, 710 (2013).Google Scholar
  28. 28.
    P. Belenky, J. D. Ye, C. B. M. Porter, N. R. Cohen, M. A. Lobritz, T. Ferrante, S. Jain, B. J. Korry, E. G. Schwarz, G. C. Walker, and J. J. Collins, Cell Rep. 13, 1 (2015).CrossRefGoogle Scholar
  29. 29.
    Oxygen Radicals in Biology and Medicine, Ed. by M. G. Simic, K. A. Taylor, J. F. Word, and C. von Sonntag (Plenium, New York, 1998).Google Scholar
  30. 30.
    B. A. Hamkalo and P. A. Swenson, J. Bacteriol. 99, 815 (1969).Google Scholar
  31. 31.
    H. Zuckerman, Y. E. Krasik, and J. Felsteiner, Innov. Food Sci. Emerg. Technol. 3, 3329 (2002).CrossRefGoogle Scholar
  32. 32.
    S. V. Gudkov, O. E. Karp, S. A. Garmash, V. E. Ivanov, A. V. Chernikov, A. A. Manokhin, M. E. Astashev, L. S. Yaguzhinsky, and V. I. Bruskov, Mol. Biophys. 57, 1 (2012).CrossRefGoogle Scholar
  33. 33.
    U. V. Gunten, Water Res. 37, 1443 (2003).CrossRefGoogle Scholar
  34. 34.
    B. G. Kwon and J. H. Lee, Bull. Korean Chem. Soc. 27, 1785 (2006).CrossRefGoogle Scholar
  35. 35.
    S. K. Dey, D. Banerjee, S. Chattapadhyay, and K. B. Karmakar, Int. J. Plasma Bio. Sci. 1 (3), 1 (2010).Google Scholar
  36. 36.
    E. Jeronsia, J. A. Joseph, and J. Das, Indian J. Dental Res. 5, 5707 (2015).Google Scholar
  37. 37.
    P. G. Mazzola, A. F. Jozala, L. C. de L. Novaes, P. Moriel, and T. C. V. Penna, Braz. J. Pharm. Sci. 45, 241 (2009).CrossRefGoogle Scholar
  38. 38.
    J. K. Kim, N. Kim, and Y. H. Lim, J. Microbiol. Biotechnol. 20, 82 (2010).Google Scholar
  39. 39.
    R. Zhang, L. Wang, Y. Wu, Z. Guan, and Z. Jia, IEEE Trans. Plasma Sci. 34, 1370 (2006).ADSCrossRefGoogle Scholar
  40. 40.
    Y. C. Hong, H. J. Park, B. J. Lee, W. S. Kang, and H. S. Uhm, Phys. Plasmas. 17, 053502 (2010).ADSCrossRefGoogle Scholar
  41. 41.
    O. Zajic, in Proceedings of the Fourth International Water Technology Conference, Alexandria, 1999, p. 415.Google Scholar
  42. 42.
    I. V. Timoshkin, M. J. Given, M. P. Wilson, T. Wang, S. J. MacGregor, and N. Bonifaci, in Proceedings of the 22nd International Symposium on Plasma Chemistry, Antwerpen, 2015, Paper P-I-3-32.Google Scholar
  43. 43.
    J. M. Palomares, S. Hübner, E. A. D. Carbone, N. deVries, E. M. van Veldhuizen, A. Sola, A. Gamero, and J. J. A. M. van den Mullen, J. Phys. D 40, 5936 (2007).Google Scholar
  44. 44.
    H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974).Google Scholar
  45. 45.
    W. L. Wiese, D. E. Kelleher, and D. R. Paquette, Phys. Rev. A 6, 1132 (1972).ADSCrossRefGoogle Scholar
  46. 46.
    T. Shirafuji, T. Morita, O. Sakai, and K. Tachibana, in Proceedings of the 19th International Symposium on Plasma Chemistry, Bochum, 2009, Vol. 3, Paper P2.2.52.Google Scholar
  47. 47.
    J. Zhang, J. Chen, and X. Li, J. Water Resource Protect. 2, 99 (2009).CrossRefGoogle Scholar
  48. 48.
    G. Eisenberg, Ind. Eng. Chem. Anal. Ed. 15, 327 (1943).CrossRefGoogle Scholar
  49. 49.
    H. Bader, J. Hoigne, Water Res. 15, 449 (1981).CrossRefGoogle Scholar
  50. 50.
    J. M. Montgomery, Water Treatment Principles and Design (Wiley, New York, 1985).Google Scholar
  51. 51.
    http://technologyinscience.blogspot.kr.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. W. Ahmed
    • 1
  • S. Choi
    • 1
  • K. Lyakhov
    • 1
  • U. Shaislamov
    • 1
  • R. K. Mongre
    • 2
  • D. K. Jeong
    • 2
  • R. Suresh
    • 1
  • H. J. Lee
    • 1
    Email author
  1. 1.Department of Nuclear and Energy EngineeringJeju National UniversityJejuRepublic of Korea
  2. 2.Faculty of BiotechnologyJeju National UniversityJejuRepublic of Korea

Personalised recommendations