Advertisement

Plasma Physics Reports

, Volume 42, Issue 9, pp 887–899 | Cite as

Investigation of the decolorization efficiency of two pin-to-plate corona discharge plasma system for industrial wastewater treatment

  • A. El-TayebEmail author
  • A. H. El-Shazly
  • M. F. Elkady
  • A. B. Abdel-Rahman
Low-Temperature Plasma

Abstract

In this article, a dual pin-to-plate high-voltage corona discharge system is introduced to study experimentally the gap distance, the contact time, the effect of pin and plate materials, the thickness of ground plate and the conductivity on the amount of Acid Blue 25 dye color removal efficiency from polluted water. A study for the optimum air gap distance between dual pin and surface of Acid Blue 25 dye solution is carried out using 3D-EM simulator to find maximum electric field intensity at the tip of both pins. The outcomes display that the best gap for corona discharge is approximately 5 mm for 15-kV source. This separation is constant during the study of other factors. In addition, an investigation of the essential reactive species responsible for oxidation of the dye organic compounds (O3 in air discharge, O3 in water, and H2O2) during the experimental time is conducted. Three various materials such as: stainless steel, copper and aluminum are used for pins and plate. The maximum color removal efficiencies of Acid Blue 25 dyes are 99.03, 82.04, and 90.78% after treatment time 15 min for stainless steel, copper, and aluminum, respectively. Measurement results for the impact of thickness of an aluminum ground plate on color removal competence show color removal efficiencies of 86.3, 90.78, and 98.06% after treatment time 15 min for thicknesses of 2, 0.5, and 0.1 mm, respectively. The increasing of the solution conductivity leads to the reduction of decolorization efficiency. A kinetic model is used to define the performance of corona discharge system. The models of pseudo-zero-order, pseudo-first-order, and pseudo-second-order reaction kinetics are utilized to investigate the decolorization of Acid Blue 25 dye. The rate of degradation of Acid Blue 25 dye follows the pseudo-first-order kinetics in the dye concentration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Yang, Y. I. Cho, and A. Fridman, Plasma Discharge in Liquid Water Treatment and Applications (CRC, Boca Raton, 2012).Google Scholar
  2. 2.
    Y. Yong, PhD Thesis (Drexel University, Philadelphia, PA 2001).Google Scholar
  3. 3.
    E. Njatawidjaja, A. T. Sugiarto, T. Ohshima, and M. Sato, J. Electrostat. 63, 353 (2005).CrossRefGoogle Scholar
  4. 4.
    H. H. Cheng, S. S. Chen, Y. C. Wu, and D. L. Ho, J. Environ. Eng. Manage 17, 427 (2007).Google Scholar
  5. 5.
    Y. S. Chen, X. S. Zhang, Y. C. Dai, and W. K. Yuan, Sep. Purif. Technol. 34, 5 (2004).CrossRefGoogle Scholar
  6. 6.
    J. H. Yan, C. M. Du, X. D. Li, B. G. Cheron, M. J. Ni, and K. F. Cen, Plasma Chem. Plasma Process. 26, 31 (2006).CrossRefGoogle Scholar
  7. 7.
    P. Šunka, V. Babickŷ, M. Člupek, P. Lukeš, M. Šimek, J. Schmidt, and M. Černák, Plasma Sources Sci. Technol. 8, 258 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    J. S. Clement, M. Sato, and R. H. Davis, IEEE Trans. Ind. Appl. 23, 224 (1987).CrossRefGoogle Scholar
  9. 9.
    El. Abd, M. M. Latif, and M. F. El-Kady, Materials Res. Bull. 46, 105 (2011).CrossRefGoogle Scholar
  10. 10.
    M. Mohy-Eldin, M. F. El-Kady, A. M. Ibrahim, and M. E. Ossman, J. Am. Sci. 6, 280 (2010).Google Scholar
  11. 11.
    M. Tichonovas, E. Krugly, V. Racys, R. Hippler, V. Kauneliene, I. Stasiulaitiene, and D. Martuzevicius, Chem. Eng. J. 229, 9 (2013).CrossRefGoogle Scholar
  12. 12.
    A. EL-Tayeb and Z. El Dein Adel, J. Energy Power Sources 1, 152 (2014).Google Scholar
  13. 13.
    O. El-Sayed Gouda, Z. El Dein Adel, and A. El-Tayeb, J. Energy Power Sources 1, 304 (2014).Google Scholar
  14. 14.
    A. El-Tayeb, A. H. El-Shazly, M. F. Elkady, and A. Abdel-Rahman, in Proceedings of the 15th IEEE International Conference on Environment and Electrical Engineering, Rome, 2015, p. 807.Google Scholar
  15. 15.
    A. El-Tayeb, A. H. El-Shazly, M. F. Elkady, and A. Abdel-Rahman, in Proceedings of the 42nd IEEE International Conference on Plasma Sciences, Antalya, 2015.Google Scholar
  16. 16.
    H. Wanga, J. Lib, and X. Quana, J. Electrostat. 64, 416 (2006).CrossRefGoogle Scholar
  17. 17.
    Y. Zhang, M. Zhou, and L. Lei, Chem. Eng. J. 132, 325 (2007).CrossRefGoogle Scholar
  18. 18.
    B. P. Dojčinović, G. M. Roglić, B. M. Obradović, M. M. Kuraica, M. M. Kostić, and J. Nešić, J. Hazard. Mater. 192, 763 (2011).CrossRefGoogle Scholar
  19. 19.
    J. Chang, P. Lawless, and T. Yamamoto, IEEE Trans. Plasma Sci. 19, 1152 (1991).ADSCrossRefGoogle Scholar
  20. 20.
    R. Ono and T. Oda, J. Phys. D 40, 176 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    N. Sander, E. Veldhuizen, P. Bruggeman, and U. Ebert, in Plasma Chemistry and Catalysis in Gases and Liquids, Ed. by V. I. Parvulescu, M. Magureanu, and P. Lukes (Wiley, New York, 2012), p. 1.Google Scholar
  22. 22.
    L. N. Aleksandrov and E. M. Bazelyan, Plasma Sources Sci. Technol. 8, 285 (1999).ADSCrossRefGoogle Scholar
  23. 23.
    B. Jiang, J. Zheng, Q. Liu, and M. Wu, Chem. Eng. J. 204, 32 (2012).CrossRefGoogle Scholar
  24. 24.
    E. Krugly, D. Martuzevicius, M. Tichonovas, D. Jankunaite, I. Rumskaite, J. Sedlina, V. Racys, and J. Baltrusaitis, Chem. Eng. J. 260, 188 (2015).CrossRefGoogle Scholar
  25. 25.
    P. Lukes and B. R. Locke, Industrial Eng. Chem. Res. 44, 2921 (2005).CrossRefGoogle Scholar
  26. 26.
    T. Weiland, Electron. Commun. 31, 116 (1977).Google Scholar
  27. 27.
    T. Weiland, Int. J. Num. Modelling 9, 295 (1996).CrossRefGoogle Scholar
  28. 28.
    B. Krietenstein, R. Schuhmann, P. Thoma, and T. Weiland, in Proceedings of XIX International Linear Accelerator Conference, Chicago, 1998, p. 860.Google Scholar
  29. 29.
    B. P. Dojčinović, G. M. Roglić, B. V. Obradović, M.M. Kuraica, M. M. Kostić, J. Nešić, and D. D. Manojlović, J. Hazard. Mater. 192, 763 (2011).CrossRefGoogle Scholar
  30. 30.
    T. C. Wang, N. Lu, J. Li, and Y. Wu, J. Hazard. Mater. 180, 436 (2010).CrossRefGoogle Scholar
  31. 31.
    P. Šunka, Phys. Plasmas 8, 25 (2001).Google Scholar
  32. 32.
    A. El-Tayeb, A. H. El-Shazly, M. F. Elkady, and A. Abdel-Rahman, Desalinat. Water Treat. (in press).Google Scholar
  33. 33.
    E.-S. Z. El-Ashtoukhy, N. K. Amin, and M. H. Abdel- Aziz, Int. J. Electrochem. Sci. 7, 11137 (2012).Google Scholar
  34. 34.
    X. Wanga, X. Jin, M. Zhou, Y. Liu, and X. Zhang, Int. Soc. Electrochem. 103, 237 (2013).ADSGoogle Scholar
  35. 35.
    P. Lukes, B. R. Locke, and J. L. Brisset, in Plasma Chemistry and Catalysis in Gases and Liquids, Ed. by V. I. Parvulescu, M. Magureanu, and P. Lukes (Wiley, New York, 2012), p. 243.Google Scholar
  36. 36.
    H. D. Lee, J. O. Kim, and J. W. Chung, Desalinat. Water Treat. 53, 2767 (2013).CrossRefGoogle Scholar
  37. 37.
    A. El-Tayeb, A. H. El-Shazly, M. F. Elkady, and A. Abdel-Rahman, Contrib. Plasma Phys. 56 (2016). doi 10.1002/ctpp.201500080.Google Scholar
  38. 38.
    S. Gasanova, PhD Thesis (Inst. für Instrumentelle Analytische Chemie der Universität Duisburg-Essen, Essen, 2013).Google Scholar
  39. 39.
    T. L. Sung, W. P. Weng, A. R. Gu, and X. C. Jhan, Surf. Coat. Technol. 205, 459 (2010).CrossRefGoogle Scholar
  40. 40.
    A. El-Tayeb, A. H. El-Shazly, and M. F. Elkady, in Proceedings of the 16th IEEE International Conference on Environment and Electrical Engineering, Florence, 2016.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. El-Tayeb
    • 1
    • 2
    Email author
  • A. H. El-Shazly
    • 1
  • M. F. Elkady
    • 1
    • 3
  • A. B. Abdel-Rahman
    • 4
    • 5
  1. 1.Chemicals and Petrochemicals Engineering DepartmentEgypt−Japan University of Science and TechnologyNew Borg El-Arab City, AlexandriaEgypt
  2. 2.Electric Engineering Department, Faculty of Energy EngineeringAswan UniversityAswanEgypt
  3. 3.Fabrication Technology DepartmentAdvanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technology Applications (SRTA City)AlexandriaEgypt
  4. 4.Electronics and Communications Engineering DepartmentEgypt−Japan University of Science and TechnologyNew Borg El-Arab City, AlexandriaEgypt
  5. 5.Electric Engineering Department, Faculty of EngineeringSouth Valley UniversityQenaEgypt

Personalised recommendations