Plasma Physics Reports

, Volume 42, Issue 1, pp 59–67 | Cite as

Plasma decay in high-voltage nanosecond discharges in oxygen-containing mixtures

  • E. M. Anokhin
  • M. A. Popov
  • I. V. Kochetov
  • N. L. Aleksandrov
  • A. Yu. Starikovskii
Low-Temperature Plasma

Abstract

Plasma decay in high-voltage nanosecond discharges in CO2: O2 and Ar: O2 mixtures at room gas temperature and a pressure of 10 Torr is studied experimentally and theoretically. The time dependence of the electron density during plasma decay is measured using microwave interferometry. The time evolution of the charged particle density, ion composition, and electron temperature is simulated numerically. It is shown that, under the given conditions, the discharge plasma is dominated for the most time by O2+ ions and plasma decay is determined by dissociative and three-body electron−ion recombination. As in the previous studies performed for air and oxygen plasmas, agreement between measurements and calculations is achieved only under the assumption that the rate of three-body recombination of molecular ions is much greater than that for atomic ions. The values of the rate constant of three-body recombination of electrons with О2+ ions in a wide range of electron temperatures (500–5500 K), as well as for thermal (300 K) electrons, are obtained by processing the experimental results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryavtsev, and I. V. Filyugin, Phys. Usp. 37, 247 (1994).CrossRefADSGoogle Scholar
  2. 2.
    S. M. Starikovskaia, N. B. Anikin, S. V. Pancheshnyi, D. V. Zatsepin, and A. Yu. Starikovskii, Plasma Sources Sci. Technol. 10, 344 (2001).CrossRefADSGoogle Scholar
  3. 3.
    S. M. Starikovskaia, J. Phys. D 39, R265 (2006).CrossRefADSGoogle Scholar
  4. 4.
    A. Starikovskiy and N. Aleksandrov, Progr. Energy Comb. Sci. 39, 61 (2013).CrossRefGoogle Scholar
  5. 5.
    S. M. Starikovskaia, J. Phys. D 47, 353001 (2014).CrossRefADSGoogle Scholar
  6. 6.
    D. V. Roupassov, A. A. Nikipelov, M. M. Nudnova, and A. Yu. Starikovskii, AIAA J. 47, 168 (2009).CrossRefADSGoogle Scholar
  7. 7.
    A. Yu. Starikovskii, A. A. Nikipelov, M. M. Nudnova, and D. V. Roupassov, Plasma Sources Sci. Technol. 18, 034015 (2009).CrossRefADSGoogle Scholar
  8. 8.
    N. L. Aleksandrov, S. V. Kindysheva, A. A. Kirpichnikov, I. N. Kosarev, S. M. Starikovskaia, and A. Yu. Starikovskii, J. Phys. D 40, 4493 (2007).CrossRefADSGoogle Scholar
  9. 9.
    N. L. Aleksandrov, E. M. Anokhin, S. V. Kindysheva, A. A. Kirpichnikov, I. N. Kosarev, M. M. Nudnova, S. M. Starikovskaya, and A. Yu. Starikovskii, Plasma Phys. Rep. 38, 179 (2012).CrossRefADSGoogle Scholar
  10. 10.
    N. L. Aleksandrov, E. M. Anokhin, S. V. Kindysheva, A. A. Kirpichnikov, I. N. Kosarev, M. M. Nudnova, S. M. Starikovskaia, and A. Yu. Starikovskii, J. Phys. D 45, 255202 (2012).CrossRefADSGoogle Scholar
  11. 11.
    J. B. A. Mitchell, Phys. Rep. 186, 215 (1990).CrossRefADSGoogle Scholar
  12. 12.
    A. I. Florescu-Mitchell and J. B. A. Mitchell, Phys. Rep. 430, 277 (2006).CrossRefADSGoogle Scholar
  13. 13.
    B. M. Smirnov, Physics of Atoms and Ions (Atomizdat, Moscow, 1974; Springer, New York, 2003).Google Scholar
  14. 14.
    L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Nauka, Moscow, 1982; Consultants Bureau, New York, 1987).CrossRefGoogle Scholar
  15. 15.
    I. A. Kossyi, A. Yu. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Source Sci. Technol. 1, 207 (1992).CrossRefADSGoogle Scholar
  16. 16.
    C. B. Collins, Phys. Rev. 140, A1850 (1965).CrossRefADSGoogle Scholar
  17. 17.
    N. B. Anikin, S. M. Starikovskaia, and A. Yu. Starikovskii, Plasma Phys. Rep. 30, 1028 (2004).CrossRefADSGoogle Scholar
  18. 18.
    L. G. H. Huxley and R. W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974).Google Scholar
  19. 19.
    M. A. Heald and C. B. Wharton, Plasma Diagnostics with Microwaves (Wiley, New York, 1965).Google Scholar
  20. 20.
    A. J. Cunningham and R. M. Hobson, J. Phys. B 5, 2320 (1972).CrossRefADSGoogle Scholar
  21. 21.
    N. L. Aleksandrov, A. M. Konchakov, L. V. Shachkin, and V. M. Shashkov, Sov. J. Plasma Phys. 12, 703 (1986).Google Scholar
  22. 22.
    B. M. Smirnov, Complex Ions (Nauka, Moscow, 1983).[in Russian].Google Scholar
  23. 23.
    M. J. McEwan and L. F. Phillips, Chemistry of the Atmosphere (Halsted, New York, 1975).Google Scholar
  24. 24.
    N. L. Aleksandrov, Usp. Fiz. Nauk 154, 177 (1988).[Sov. Phys. Phys. Usp. 31, 102 (1988).CrossRefGoogle Scholar
  25. 25.
    N. A. Dyatko, I. V. Kochetov, A. P. Napartovich, and A. G. Sukharev, EEDF: The Software Package for Calculations of the Electron Energy Distribution Function in Gas Mixtures, http://frlxcatnet/download/EEDF/Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. M. Anokhin
    • 1
  • M. A. Popov
    • 1
  • I. V. Kochetov
    • 2
  • N. L. Aleksandrov
    • 1
  • A. Yu. Starikovskii
    • 3
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia
  2. 2.Troitsk Institute for Innovation and Fusion ResearchMoscowRussia
  3. 3.Princeton UniversityPrincetonUSA

Personalised recommendations