Plasma Physics Reports

, Volume 41, Issue 9, pp 725–736 | Cite as

Fast ignition of an inertial fusion target with a solid noncryogenic fuel by an ion beam

  • S. Yu. Gus’kov
  • N. V. Zmitrenko
  • D. V. Il’in
  • V. E. Sherman
Inertial Confinement Fusion

Abstract

The burning efficiency of a preliminarily compressed inertial confinement fusion (ICF) target with a solid noncryogenic fuel (deuterium-tritium beryllium hydride) upon fast central ignition by a fast ion beam is studied. The main aim of the study was to determine the extent to which the spatial temperature distribution formed under the heating of an ICF target by ion beams with different particle energy spectra affects the thermonuclear gain. The study is based on a complex numerical modeling including computer simulations of (i) the heating of a compressed target with a spatially nonuniform density and temperature distributions by a fast ion beam and (ii) the burning of the target with the initial spatial density distribution formed at the instant of maximum compression of the target and the initial spatial temperature distribution formed as a result of heating of the compressed target by the ion beam. The threshold energy of the igniting ion beam and the dependence of the thermonuclear gain on the energy deposited in the target are determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Yu. Gus’kov, D. V. Il’in, and V. E. Sherman, Plasma Phys. Rep. 37,1020(2011).CrossRefADSGoogle Scholar
  2. 2.
    S. Yu. Gus’kov, D. V. Il’in, and V. E. Sherman, The 7th International Conference on Inertial Fusion Sciences and Applications, Bordeaux, 2011, Book of Abstracts, p. 235.Google Scholar
  3. 3.
    S. Yu. Gus’kov, N. V. Zmitrenko, and V. E. Sherman, JETP 116,673(2013).CrossRefADSGoogle Scholar
  4. 4.
    E. Moses and C. R. Wuest, Fusion Sci. Technol. 47,314(2005).Google Scholar
  5. 5.
    D. Besnard, Eur. Phys. J. D 44,207(2006).CrossRefADSGoogle Scholar
  6. 6.
    S. G. Garanin, Phys. Usp. 54,415(2011).CrossRefADSGoogle Scholar
  7. 7.
    N. V. Zmitrenko, V. Ya. Karpov, and A. P. Fadeev, Vopr. At. Nauki Tekh., Ser. Metod. Progr. Chisl. Resheniya Zadach Mat. Fiz. 2,38(1982).Google Scholar
  8. 8.
    N. G. Basov, S. Yu. Gus’kov, and L. P. Feoktistov, J. Sov. Laser Res. 13,396(1992).CrossRefGoogle Scholar
  9. 9.
    M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, M. E. Campbell, M. D. Perry, and R. J. Mason, Phys. Plasmas 1,1626(1994).CrossRefADSGoogle Scholar
  10. 10.
    S. Yu. Gus’kov, D. V. Il’in, A. A. Levkovsky, V. B. Rozanov, V. E. Sherman, and O. B. Vygodsky, Laser Part. Beams 16,129(1998).CrossRefADSGoogle Scholar
  11. 11.
    J. C. Fernandez, J. J. Honrubia, B. J. Albright, K.A.Flippo, D. C. Gautier, B. M. Hegelich, M. J. Schmitt, M. Temporal, and L. Yin, Nucl. Fusion 49,065004(2009).CrossRefADSGoogle Scholar
  12. 12.
    S. Yu. Gus’kov, Plasma Phys. Rep. 39,1(2013).CrossRefADSGoogle Scholar
  13. 13.
    S. Yu. Gus’kov, D. V. Il’in, I. Limpoukh, O. Klimo, and V. E. Sherman, Plasma Phys. Rep. 36,473(2010).CrossRefADSGoogle Scholar
  14. 14.
    S. Yu. Gus’kov, D. V. Il’in, and V. E. Sherman, Plasma Phys. Rep. 40,572(2014).CrossRefADSGoogle Scholar
  15. 15.
    O. R. Gasparyan, S. Yu. Gus’kov, D. V. Il’in, V. E. Sherman, and N. V. Zmitrenko, J. Russ. Laser Res. 34,33(2013).CrossRefGoogle Scholar
  16. 16.
    S. Yu. Gus’kov, D. V. Il’in, N. V. Zmitrenko, and V. E. Sherman, JETP 119,958(2014).CrossRefADSGoogle Scholar
  17. 17.
    S. Yu. Gus’kov, N. V. Zmitrenko, D. V. Il’in, A. A. Levkovskii, V. B. Rozanov, and V. E. Sherman, Plasma Phys. Rep. 35,709(2009).CrossRefADSGoogle Scholar
  18. 18.
    D. V. Sivukhin, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1968), Vol. 4, p. 93.ADSGoogle Scholar
  19. 19.
    N. G. Basov, O. B. Vygovskii, S. Yu. Gus’kov, D. V. Il’in, A. A. Levkovskii, V. B. Rozanov, and V. E. Sherman, Sov. J. Plasma Phys. 12,526(1986).Google Scholar
  20. 20.
    M. Dunne, N. Alexander, F. Amiranoff, P. Auger, S. Atzeni, H. Azechi, V. Bagnoud, P. Balcou, J. Badziak, D. Batani, C. Bellei, D. Besnard, R. Bingham, J. Breil, M. Borghesi, et al., RAL Technical Report No. RAL-TR-2007-008 (Rutherford Appleton Laboratory, Oxford, 2007).Google Scholar
  21. 21.
    S. Atzeni, A. Schiavi, J. J. Honrubia, X. Ribeyre, G. Schurtz, Ph. Nicolai, M. Olazabal-Loumé, C. Bellei, R. G. Evans, and J. R. Davies, Phys. Plasmas 15,056311(2008).CrossRefADSGoogle Scholar
  22. 22.
    X. Ribeyre, Ph. Nikolai, G. Schurtz, X. Ribeyre, M. Olazabal-Loume, J. Breil, P. H. Maire, J. L. Feugeas, L. Hallo, and V. T. Tikhonchuk, Plasma Phys. Controlled Fusion 50,025007(2008).CrossRefADSGoogle Scholar
  23. 23.
    S. Yu. Gus’kov, N. V. Zmitrenko, and V. B. Rozanov, J. Russ. Laser Res. 32,596(2011).CrossRefGoogle Scholar
  24. 24.
    B. Yu. Sharkov, N. N. Alexeev, M. M. Basko, M. D. Churazov, D. G. Koshkarev, S. A. Medin, Yu. N. Orlov, and V. M. Suslin, Nucl. Fusion 45,291(2005).CrossRefADSGoogle Scholar
  25. 25.
    B. Yu. Sharkov, Nucl. Instrum. Meth. Phys. Res. 577,14(2007).CrossRefADSGoogle Scholar
  26. 26.
    B. G. Logan, J. J. Barnard, F. M. Bieniosek, R. H. Cohen, J. E. Coleman, R. C. Davidson, P. C. Efthimion, A. Friedman, E. P. Gilson, W. G. Greenway, L. Grisham, D. P. Grote, E. Henestroza, D. H. H. Hoffmann, I. D. Kaganovich, et al., J. Phys. Conf. Ser. 112,032029(2008).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. Yu. Gus’kov
    • 1
    • 2
  • N. V. Zmitrenko
    • 3
  • D. V. Il’in
    • 4
  • V. E. Sherman
    • 4
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia
  3. 3.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia
  4. 4.St. Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations