Advertisement

Plasma Physics Reports

, Volume 41, Issue 3, pp 281–289 | Cite as

Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

  • A. A. Malinina
  • A. N. Malinin
Low-Temperature Plasma

Abstract

Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λmax = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10−15 m3/s.

Keywords

Plasma Physic Report Dielectric Barrier Discharge Argon Atom Electron Energy Distribution Function Electron Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Burnham and E. J. Schimitschek, Laser Focus, No. 6, 54 (1981).Google Scholar
  2. 2.
    A. E. Petrukhin and A. S. Podsosonnyi, Quant. Electron. 20, 467 (1990).ADSGoogle Scholar
  3. 3.
    S. P. Bazhulin, N. G. Basov, S. N. Bugrimov, V. S. Zuev, A. S. Kamrukov, G. N. Kashnikov, N. P. Kozlov, P. A. Ovchinnikov, P. A. Opekan, V. K. Orlov, and Yu. S. Protasov, Quant. Electron. 16, 663 (1986).ADSGoogle Scholar
  4. 4.
    A. J. Berry, C. Whitehurst, and T. A. King, J. Phys. D 21, 39 (1988).CrossRefADSGoogle Scholar
  5. 5.
    A. N. Malinin, Quant. Electron. 35, 243 (2005).CrossRefADSGoogle Scholar
  6. 6.
    A. N. Malinin, A. K. Shuaibov, and V. S. Shevera, Zh. Prikl. Spektrosk. 32, 735 (1980).Google Scholar
  7. 7.
    H. Furusawa, S. Okada, and M. Obara, Appl. Phys. 66, 1877 (1995).ADSGoogle Scholar
  8. 8.
    A. N. Malinin, L. L. Shimon, N. N. Guivan, and A. V. Polyak, Opt. Atmos. Okeana 12, 1024 (1999).Google Scholar
  9. 9.
    M. M. Guivan, O. M. Malinin, and L. L. Shimon, Nauk. Vest. Uzhhorod. Univ., No. 4, 12 (1999).Google Scholar
  10. 10.
    M. M. Guivan, O. M. Malinin, and L. L. Shimon, Nauk. Vest. Uzhhorod. Univ., No. 5, 87 (1999).Google Scholar
  11. 11.
    M. M. Guivan, A. N. Malinin, and L. L. Shimon, Uzhhorod Univ. Sci. Herald. Ser. Phys, No. 8, 187 (2000).Google Scholar
  12. 12.
    A. N. Malinin, M. M. Guivan, and L. L. Shimon, Opt. Spektrosk. 89, 905 (2000).CrossRefGoogle Scholar
  13. 13.
    V. V. Polyak, M. M. Guivan, and O. M. Malinin, Nauk. Vest. Uzhhorod. Univ., No. 7, 127 (2000).Google Scholar
  14. 14.
    M. M. Guivan, O. M. Malinin, and L. L. Shimon, Zh. Fiz. Doslidzh. 6(1), 74 (2002).Google Scholar
  15. 15.
    M. M. Guivan and A. N. Malinin, Ukr. Fiz. Zh. 47(1), 24 (2002).Google Scholar
  16. 16.
    A. A. Malinina, N. N. Guivan, and A. K. Shuaibov, Zh. Prikl. Spektrosk. 76, 752 (2009).Google Scholar
  17. 17.
    A. A. Malinina, N. N. Guivan, L. L. Shimon, and A. K. Shuaibov, Plasma Phys. Rep. 36, 803 (2010).CrossRefADSGoogle Scholar
  18. 18.
    A. A. Malinina and A. K. Shuaibov, Opt. Spektrosk. 110, 218 (2011).CrossRefGoogle Scholar
  19. 19.
    U. Kogelschatz, Fundamentals and Applications of Dielectric-Barrier Discharges (ABB Corp. Res., Baden, 2000).Google Scholar
  20. 20.
    Yu. I. Posudin, Laser Photobiology (Vishcha shkola, Kiev, 1989) [in Russian].Google Scholar
  21. 21.
    V. D. Romanenko, Yu. G. Krot, L. A. Sirenko, and V. D. Solomatina, Biotechnology of Hydrobion Cultivation (Institute of Hydrobiology, NAS Ukraine, Kiev, 1999) [in Russian].Google Scholar
  22. 22.
    A. I. Efimov, L. P. Belorukova, I. V. Vasil’kova, and V. P. Chechev, Properties of Inorganic Compounds (Handbook) (Khimiya, Leningrad, 1983) [in Russian].Google Scholar
  23. 23.
    R. A. Sapozhnikov, Theoretical Photometry (Energiya, Moscow, 1977) [in Russian].Google Scholar
  24. 24.
    R. W. B. Pearse and A. G. Gaydon, The Identification of Molecular Spectra (Chapman & Hall, London, 1963).Google Scholar
  25. 25.
    G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).CrossRefADSGoogle Scholar
  26. 26.
  27. 27.
    W. L. Nighan and R. T. Brown, J. Appl. Phys. 53, 7201 (1982).CrossRefADSGoogle Scholar
  28. 28.
    M. J. Kushner, A. L. Pindrof, C. H. Fisher, and T. A. Znotins, J. Appl. Phys. 75, 2406 (1985).CrossRefADSGoogle Scholar
  29. 29.
    V. Kushawaha and M. Mahmood, J. Appl. Phys. 62, 2173 (1987).CrossRefADSGoogle Scholar
  30. 30.
    A. N. Malinin, Laser Phys. 7, 1168 (1997).Google Scholar
  31. 31.
    Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).Google Scholar
  32. 32.
    M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shitts, and M. V. Erofeev, Phys. Usp. 46, 193 (2003).CrossRefADSGoogle Scholar
  33. 33.
    Applied Atomic Collision Physics, Vol. 3: Gas Lasers, Ed. by E. W. McDaniel and W. L. Nighan (Academic, New York, 1982).Google Scholar
  34. 34.
    A. N. Malinin and L. L. Shimon, Quant. Electron. 26, 1047 (1996).CrossRefADSGoogle Scholar
  35. 35.
    A. N. Malinin, Laser Phys. 7, 1177 (1997).Google Scholar
  36. 36.
    A. N. Malinin, Laser Phys. 7, 1032 (1997).Google Scholar
  37. 37.
    H. Helvajian and C. Witting, Appl. Phys. 38, 731 (1981).ADSGoogle Scholar
  38. 38.
    V. V. Datsyuk, I. A. Izmailov, and V. A. Kochelap, Phys. Usp. 41, 379 (1998).CrossRefADSGoogle Scholar
  39. 39.
    C. Roxlo and A. Mandl, J. Chem. Phys. 72, 541 (1980).CrossRefADSGoogle Scholar
  40. 40.
    R. W. Waynant and J. G. Eden, Appl. Phys. Lett. 33, 708 (1978).CrossRefADSGoogle Scholar
  41. 41.
    A. N. Malinin, A. V. Polyak, N. N. Guivan, N. G. Zubrilin, and L. L. Shimon, Quant. Electron. 32, 155 (2002).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Uzhhorod National UniversityUzhhorodUkraine

Personalised recommendations