Plasma Physics Reports

, Volume 41, Issue 2, pp 182–187 | Cite as

Exactly solvable model of resonance tunneling of an electromagnetic wave in plasma containing short-scale inhomogeneities

  • N. S. Erokhin
  • V. E. Zakharov
  • N. N. Zol’nikova
  • L. A. Mikhailovskaya
Oscillations and Waves in Plasma


Different variants of resonance tunneling of a transverse electromagnetic wave through a plasma layer containing short-scale (subwavelength) inhomogeneities, including evanescence regions to which approximate methods are inapplicable, are analyzed in the framework of an exactly solvable one-dimensional model. Complex plasma density profiles described by a number of free parameters determining the permittivity modulation depth, the characteristic scale lengths of plasma structures, their number, and the thickness of the inhomogeneous plasma layer are considered. It is demonstrated that reflection-free propagation of the wave incident on the layer from vacuum (the effect of wave-barrier transillumination) can be achieved for various sets of such structures, including plasma density profiles containing a stochastic component. Taking into account cubic nonlinearity, it is also possible to obtain an exact solution to the one-dimensional problem on the nonlinear transillumination of nonuniform plasma. In this case, the thicknesses of the evanescence regions decrease appreciably. The problem of resonance tunneling of electromagnetic waves through such barriers is of interest for a number of practical applications.


Electromagnetic Wave Solvable Model Plasma Physic Report Plasma Layer Effective Permittivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, Phys. Rev. 67, 195402 (2003).CrossRefADSGoogle Scholar
  2. 2.
    A. B. Shvartsburg, Phys. Usp. 48, 797 (2005).CrossRefADSGoogle Scholar
  3. 3.
    E. Ozbay, Science 311, 189 (2006).CrossRefADSGoogle Scholar
  4. 4.
    E. Fourkal, I. Velchev, C. M. Ma, and A. Smolyakov, Phys. Lett. A 361, 277 (2007).CrossRefADSGoogle Scholar
  5. 5.
    N. S. Erokhin and V. E. Zakharov, Doklady Phys. 52, 485 (2007).CrossRefADSGoogle Scholar
  6. 6.
    A. S. Shalin, JETP Lett. 91, 636 (2010).CrossRefADSGoogle Scholar
  7. 7.
    M. V. Davidovich, J. Comm. Technol. Electron. 55, 465 (2010).CrossRefGoogle Scholar
  8. 8.
    N. S. Erokhin and V. E. Zakharov, Plasma Phys. Rep. 37, 762 (2011).CrossRefADSGoogle Scholar
  9. 9.
    M. V. Poverennyi and N. S. Erokhin, Vopr. At. Nauki Tekh., Ser. Plasm. Elektron. Novye Metody Uskor., No. 4, 133 (2013).Google Scholar
  10. 10.
    S. V. Nazarenko, A. C. Newell, and V. E. Zakharov, Phys. Plasmas 1, 2827 (1994).CrossRefADSGoogle Scholar
  11. 11.
    B. A. Lagovsky, J. Comm. Technol. Electron. 51, 68 (2006).CrossRefGoogle Scholar
  12. 12.
    A. A. Zharov, I. G. Kondrat’ev, and M. A. Miller, Sov. J. Plasma Phys. 5, 146 (1979).ADSGoogle Scholar
  13. 13.
    A. N. Kozyrev, A. D. Piliya, and V. I. Fedorov, Sov. J. Plasma Phys. 5, 180 (1979).ADSGoogle Scholar
  14. 14.
    V. L. Ginzburg and A. A. Rukhadze, Electromagnetic Waves in Plasma (Nauka, Moscow, 1970) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • N. S. Erokhin
    • 1
    • 3
  • V. E. Zakharov
    • 1
    • 2
  • N. N. Zol’nikova
    • 1
  • L. A. Mikhailovskaya
    • 1
  1. 1.Space Research InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  3. 3.People’s Friendship University of RussiaMoscowRussia

Personalised recommendations