Plasma Physics Reports

, Volume 40, Issue 1, pp 65–77 | Cite as

Mechanism of streamer stopping in a surface dielectric barrier discharge

  • V. R. SolovievEmail author
  • V. M. Krivtsov
Low-Temperature Plasma


Two-dimensional numerical simulations of streamer development in a surface dielectric barrier discharge excited by a voltage pulse with a duration of 30–50 ns in atmospheric air show that the streamer propagation velocity is mainly governed by the velocity of potential diffusion along streamer channels. The calculated streamer length substantially exceeds the experimentally observed one due to the long-term conservation of the conductivity of these channels. A hypothesis on the three-dimensional character of the decay of the surface streamer channel is proposed. The model account of this effect in two-dimensional simulations reduces the calculated time of streamer development and the calculated streamer length to the experimentally observed values.


Plasma Physic Report Streamer Channel Streamer Velocity Potential Diffusion Streamer Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Roth, D. M. Sherman, and S. P. Wilkinson, AIAA J. 38, 1166 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    G. Artana, J. D’Adamo, L. Leger, et al., AIAA J. 40, 1773 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    E. Moreau, J. Phys. D 40, 605 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    T. C. Corke, M. L. Post, and D. M. Orlov, Exp. Fluids 46, 1 (2009).CrossRefGoogle Scholar
  5. 5.
    A. Starikovskiy and N. Aleksandrov, Progr. Energy Combust. Sci. 39, 61 (2013).CrossRefGoogle Scholar
  6. 6.
    I. N. Kosarev, V. I. Khorunzhenko, E. I. Mintoussov, et al., Plasma Sources Sci. Technol. 21, 045012 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    V. I. Gibalov and G. J. Pietsch, J. Phys. D 33, 2618 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    A. Yu. Starikovskii, A. A. Nikipelov, M. M. Nudnova, and D. V. Roupassov, Plasma Sources Sci. Technol. 18, 034015 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    T. M. P. Briels, J. Kos, G. J. J. Winands, et al., J. Phys. D 41, 234004 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    V. R. Soloviev and V. M. Krivtsov, J. Phys. D 42, 125208 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    G. E. Georghiou, A. P. Papadakis, R. Morrow, and A. C. Metaxas, J. Phys. D 38, R303 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    N. L. Aleksandrov, F. I. Vysikailo, R. Sh. Islamov, et al., Teplofiz. Vys. Temp. 19, 22 (1981).ADSGoogle Scholar
  13. 13.
    Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).Google Scholar
  14. 14.
    S. V. Pancheshnyi, S. M. Starikovskaia, and A. Yu. Starikovskii, J. Phys. D 34, 1 (2001).CrossRefGoogle Scholar
  15. 15.
    E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (MFTI, Moscow, 1997; CRC, Boca Raton, 1998).Google Scholar
  16. 16.
    Yu. Akishev, G. Aponin, A. Balakirev, et al., Plasma Sources Sci. Technol. 22, 015004 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia
  2. 2.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  3. 3.Dorodnicyn Computing CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations