Advertisement

Plasma Physics Reports

, Volume 38, Issue 13, pp 1001–1006 | Cite as

Electrodynamic properties of a non-degenerate low-temperature plasma at ħ → 0

  • B. A. VeklenkoEmail author
Plasma Physics
  • 58 Downloads

Abstract

Electrodynamics of a low-temperature plasma, including a quantized longitudinal electromagnetic field and containing a dimensionless quantum parameter, are presented. Such a parameter is the dimensionless charge inversely proportional to the root-mean-square velocity of electrons in plasma and larger than unity in magnitude. Thus, the results of numerical calculations based on the perturbation theory are now in doubt.

Keywords

Plasma Physic Report Polarization Operator Vlasov Equation Root Mean Square Velocity Mass Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1978; Springer-Verlag, Berlin, 1984).Google Scholar
  2. 2.
    B. A. Veklenko, Prikl. Fiz., No. 5, 5 (2009).Google Scholar
  3. 3.
    L. Tonks and I. Langmuir, Phys. Rev. 33, 195 (1929).ADSzbMATHCrossRefGoogle Scholar
  4. 4.
    L. D. Landau, Zh. Eksp. Teor. Fiz. 7, 203 (1937).zbMATHGoogle Scholar
  5. 5.
    A. A. Vlasov, Zh. Eksp. Teor. Fiz. 8, 291 (1938).zbMATHGoogle Scholar
  6. 6.
    L. D. Landau, Zh. Eksp. Teor. Fiz. 16, 574 (1946).zbMATHGoogle Scholar
  7. 7.
    Yu. L. Klimontovich and V. P. Silin, Zh. Eksp. Teor. Fiz. 23, 151 (1952).zbMATHGoogle Scholar
  8. 8.
    D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    M. V. Kuzelev and A. A. Rukhadze, Phys. Usp. 42, 603 (1999).ADSCrossRefGoogle Scholar
  10. 10.
    P. K. Shukla and B. Eliasson, Phys. Usp. 53, 51 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    M. O. Scally and W. E. Lamb, Phys. Rev. 159, 208 (1967).ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Fizmatgiz, Moscow, 1962; Prentice-Hall, Englewood Cliffs, NJ, 1963).Google Scholar
  13. 13.
    G. B. Tkachuk, Tr. Mosk. Energ. Inst., No. 350, 26 (1978).Google Scholar
  14. 14.
    L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1964).MathSciNetGoogle Scholar
  15. 15.
    B. A. Veklenko, Sov. Phys. JETP 69, 258 (1989).Google Scholar
  16. 16.
    H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Moscow Power Engineering Institute (Technical University)MoscowRussia

Personalised recommendations