Advertisement

Plasma Physics Reports

, Volume 38, Issue 2, pp 179–186 | Cite as

Plasma decay in the afterglow of a high-voltage nanosecond discharge in air

  • N. L. Aleksandrov
  • E. M. Anokhin
  • S. V. Kindysheva
  • A. A. Kirpichnikov
  • I. N. Kosarev
  • M. M. Nudnova
  • S. M. Starikovskaya
  • A. Yu. Starikovskii
Low-Temperature Plasma

Abstract

The decay of air plasma produced by a high-voltage nanosecond discharge at room temperature and gas pressures in the range of 1–10 Torr was studied experimentally and theoretically. The time dependence of the electron density was measured with a microwave interferometer. The initial electron density was about 1012 cm−3. The discharge homogeneity was monitored using optical methods. The dynamics of the charged particle densities in the discharge afterglow was simulated by numerically solving the balance equations for electron and ions and the equation for the electron temperature. It was shown that, under these experimental conditions, plasma electrons are mainly lost due to dissociative and three-body recombination with ions. Agreement between the measured and calculated electron densities was achieved only when the rate constant of the three-body electron-ion recombination was increased by one order of magnitude and the temperature dependence of this rate constant was modified. This indicates that the mechanism for three-body recombination of molecular ions differs from that of the well-studied mechanism of atomic ion recombination.

Keywords

Plasma Physic Report High Voltage Electrode Plasma Decay Nanosecond Discharge Charged Particle Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryavtsev, and I. V. Filyugin, Phys. Usp. 37, 247 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    S. M. Starikovskaia, N. B. Anikin, S. V. Pancheshnyi, et al., Plasma Sources Sci. Technol. 10, 344 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    S. M. Starikovskaia, A. Yu. Starikovskii, and D. V. Zatsepin, J. Phys. D 31, 1118 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    B. N. Ganguly and J. W. Parish, Appl. Phys. Lett. 84, 4953 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    A. Yu. Starikovskii, Proc. Combust. Inst. 30, 2405 (2005).CrossRefGoogle Scholar
  6. 6.
    S. M. Starikovskaia, J. Phys. D 39, R265 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    A. Yu. Starikovskii, N. B. Anikin, I. N. Kosarev, et al., Pure Appl. Chem. 78, 1265 (2006).CrossRefGoogle Scholar
  8. 8.
    S. V. Pancheshnyi, D. A. Lacoste, A. Bourdon, and C. O. Laux, IEEE Trans. Plasma Sci. 34, 2478 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    I. V. Adamovich, I. Choi, N. Jiang, et al., Plasma Sources Sci. Technol. 18, 034018 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    D. V. Roupassov, A. A. Nikipelov, M. M. Nudnova, and A. Yu. Starikovskii, AIAA J. 47, 168 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    A. Yu. Starikovskii, A. A. Nikipelov, M. M. Nudnova, and D. V. Roupassov, Plasma Sources Sci. Technol. 18, 034015 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    A. L. Vikharev, A. M. Gorbachev, O. A. Ivanov, and A. L. Kolysko, Prikl. Fiz. 4, 38 (1994).Google Scholar
  13. 13.
    A. L. Vikharev, A. M. Gorbachev, O. A. Ivanov, et al., Tech. Phys. 41, 665 (1996).Google Scholar
  14. 14.
    N. L. Aleksandrov, S. V. Kindysheva, A. A. Kirpichnikov, et al., J. Phys. D 40, 4493 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    N. B. Anikin, S. M. Starikovskaya, and A. Yu. Starikovskii, Plasma Phys. Rep. 30, 1028 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    N. B. Anikin, S. M. Starikovskaia, and A. Yu. Starikovskii, J. Phys. D 39, 3244 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    M. A. Heald and C. B. Wharton, Plasma Diagnostics with Microwaves (Wiley, New York, 1965; Atomizdat, Moscow, 1968).Google Scholar
  18. 18.
    I. A. Kossyi, A. Yu. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992).ADSCrossRefGoogle Scholar
  19. 19.
    A. I. Florescu-Mitchell and J. B. A. Mitchell, Phys. Rep. 430, 277 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    V. L. Bychkov, A. B. Eletskii, and B. M. Smirnov, in Plasma Chemistry, Ed. by B. M. Smirnov (Atomizdat, Moscow, 1983), Vol. 10, p. 146 [in Russian].Google Scholar
  21. 21.
    I. P. Shkarofsky, T. W. Johnston, and M. P. Bachynskii, The Particle Kinetics of Plasmas (Addison-Wesley, Reading, 1966; Atomizdat, Moscow, 1969).Google Scholar
  22. 22.
    N. A. Dyatko, I. V. Kochetov, A. P. Napartovich, and A. G. Sukharev, http://www.lxcat.laplace.univ-tlse.fr/software/EEDF/
  23. 23.
    L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Nauka, Moscow, 1982; Consultants Bureau, New York, 1987).Google Scholar
  24. 24.
    B. M. Smirnov, Ions and Excited Atoms in Plasma (Atomizdat, Moscow, 1974) [in Russian].Google Scholar
  25. 25.
    C. B. Collins, Phys. Rev. 140, A1 850 (1965).Google Scholar
  26. 26.
    C. Jungen and S. T. Pratt, Phys. Rev. Lett. 102, 023201 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    R. Johnsen and S. L. Guberman, Adv. At. Mol. Opt. Phys. 59, 75 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • N. L. Aleksandrov
    • 1
  • E. M. Anokhin
    • 1
  • S. V. Kindysheva
    • 1
  • A. A. Kirpichnikov
    • 1
  • I. N. Kosarev
    • 1
  • M. M. Nudnova
    • 1
  • S. M. Starikovskaya
    • 2
  • A. Yu. Starikovskii
    • 3
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia
  2. 2.Ecole Polytechnique, route de SaclayPalaiseauFrance
  3. 3.Princeton UniversityPrincetonUSA

Personalised recommendations