Plasma Physics Reports

, Volume 37, Issue 7, pp 553–571 | Cite as

Study of fast-ion losses in experiments on neutral beam injection on the Globus-M spherical tokamak

  • F. V. Chernyshev
  • V. I. Afanasyev
  • V. K. Gusev
  • A. E. Ivanov
  • G. S. Kurskiev
  • A. D. Melnik
  • V. B. Minaev
  • M. I. Mironov
  • V. G. Nesenevich
  • M. I. Patrov
  • M. P. Petrov
  • S. Ya. Petrov
  • Yu. V. Petrov
  • N. V. Sakharov
  • S. Yu. Tolstyakov
Tokamaks

Abstract

The paper presents a review of the main results on the heating of plasma ions and behavior of fast ions in experiments on neutral beam injection (NBI) carried out in 2003–2010 on the Globus-M spherical tokamak. It is noticed that, along with significant success achieved in NBI plasma heating, there is experimental evidence indicating significant losses of the power injected into the plasma. Most probably, the power is lost due to so-called first-orbit losses, i.e., losses of fast ions that are produced in plasma after ionization of beam atoms and occur in unconfined trajectories. Until recently, the absence of appropriate diagnostic equipment did not allow one to verify this hypothesis. The use of the ACORD-M charge-exchange analyzer directed tangentially to the plasma column made it possible to measure the spectra of fast ions slowed down in plasma and confirm the assumption on the presence of substantial orbit losses of fast particles (∼25–50% of the beam power). In addition to the review of the experimental results, the paper presents analysis of orbit losses on the basis of 3D simulations of fast-ion trajectories in plasma. The results of experiments on studying the influence of the magnitude of the tokamak magnetic field on the confinement of fast ions are also presented. Along with computer simulations, these experiments made it possible to formulate recommendations on the reduction of orbit losses in the Globus-M tokamak.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. W. Perkins, D. E. Post, N. A. Uckan, et al., Nucl. Fusion 39, 2137 (1999).CrossRefGoogle Scholar
  2. 2.
    M. P. Gryaznevich, R. Akers, P. G. Carolan, et al., Phys. Rev. Lett. 80, 3972 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    E. J. Strait, Phys. Plasmas 1, 1415 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    V. K. Gusev, V. E. Golant, E. Z. Gusakov, et al., Zh. Tekh. Fiz. 69(9), 58 (1999) [Tech. Phys. 44, 1054 (1999)].Google Scholar
  5. 5.
    V. K. Gusev, A. V. Dech, L. A. Esipov, et al., Zh. Tekh. Fiz. 77(9), 28 (2007) [Tech. Phys. 52, 1127 (2007)].Google Scholar
  6. 6.
    A. B. Izvozchikov, M. P. Petrov, S. Ya. Petrov, et al., Zh. Tekh. Fiz. 62(2), 157 (1992) [Tech. Phys. 37, 201 (1992)].Google Scholar
  7. 7.
    B. B. Ayushin, A. G. Barsukov, V. K. Gusev, et al., Fiz. Plazmy 34, 99 (2008) [Plasma Phys. Rep. 34, 81 (2008)].Google Scholar
  8. 8.
    V. K. Gusev, S. E. Aleksandrov, V. Kh. Alimov, et al., Nucl. Fusion 49, 104021 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    F. V. Chernyshev, B. B. Ayushin, V. V. Dyachenko, et al., in Proceedings of the 34th EPS Conference on Plasma Physics, Warsaw, 2007, ECA 31F, P–5.107 (2007).Google Scholar
  10. 10.
    V. I. Afanasyev, A. Gondhalekar, and A. I. Kislyakov, Preprint No. JET-R-(00\)04 (ECS/EEC/EURATOM, Lyxemburg, 1999).Google Scholar
  11. 11.
    D. J. Sigmar and G. Jouce, Nucl. Fusion 14, 447 (1971).CrossRefGoogle Scholar
  12. 12.
    M. Wakatani, V. S. Mukhovatov, K. H. Burrell, et al., Nucl. Fusion 39, 2175 (1999).CrossRefGoogle Scholar
  13. 13.
    E. J. Doyle, W. A. Houlberg, Y. Kamada, et al., Nucl. Fusion 47, 18 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    S. Yu. Tolstyakov, G. S. Kurskiev, V. K. Gusev, et al., in Proceedings of the 37th EPS Conference on Plasma Physics, Dublin, 2010, ECA 34A, P–5.137 (2010).Google Scholar
  15. 15.
    V. B. Minaev, B. B. Ayushin, A. G. Barsukov, et al., in Proceedings of the 35th EPS Conference on Plasma Physics, Hersonissos, 2008, ECA 32D, P–1.110 (2008).Google Scholar
  16. 16.
    F. V. Chernyshev, V. I. Afanasyev, B. B. Ayushin, et al., in Proceedings of the 35th EPS Conference on Plasma Physics, Hersonissos, 2008, ECA 32D, P–2.097 (2008).Google Scholar
  17. 17.
    J. G. Cordey, E. P. Gorbunov, J. Hugill, et al., Nucl. Fusion 15, 441 (1975).ADSCrossRefGoogle Scholar
  18. 18.
    W. W. Heidbrink and G. J. Sadler, Nucl. Fusion 34, 535 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    S. Yu. Tolstyakov, V. K. Gusev, M. M. Kochergin, et al., Zh. Tekh. Fiz. 76(7), 27 (2006) [Tech. Phys. 51, 846 (2006)].Google Scholar
  20. 20.
    L. L. Lao, H. E. St. John, R. D. Stambaugh, et al., Nucl. Fusion 25, 1611 (1985).CrossRefGoogle Scholar
  21. 21.
    V. K. Gusev, S. E. Bender, A. V. Dech, et al., Zh. Tekh. Fiz. 76(8), 25 (2006) [Tech. Phys. 51, 987 (2006)].Google Scholar
  22. 22.
    M. I. Patrov, B. B. Ayushin, V. K. Gusev, et al., in Proceedings of the 36th EPS Conference on Plasma Physics, Sofia, 2009, ECA 33E, P–5.153 (2009).Google Scholar
  23. 23.
    V. B. Minaev, F. V. Chernyshev, V. K. Gusev, et al., in Proceedings of the 37th EPS Conference on Plasma Physics, Dublin, 2010, ECA 34A, P–5.169 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • F. V. Chernyshev
    • 1
  • V. I. Afanasyev
    • 1
  • V. K. Gusev
    • 1
  • A. E. Ivanov
    • 1
  • G. S. Kurskiev
    • 1
  • A. D. Melnik
    • 1
  • V. B. Minaev
    • 1
  • M. I. Mironov
    • 1
  • V. G. Nesenevich
    • 1
  • M. I. Patrov
    • 1
  • M. P. Petrov
    • 1
  • S. Ya. Petrov
    • 1
  • Yu. V. Petrov
    • 1
  • N. V. Sakharov
    • 1
  • S. Yu. Tolstyakov
    • 1
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations