Advertisement

Plasma Physics Reports

, Volume 37, Issue 6, pp 477–497 | Cite as

Nonlinear dynamics of drift structures in a magnetized dissipative plasma

  • G. D. Aburjania
  • D. L. Rogava
  • O. A. Kharshiladze
Plasma Dynamics
  • 90 Downloads

Abstract

A study is made of the nonlinear dynamics of solitary vortex structures in an inhomogeneous magnetized dissipative plasma. A nonlinear transport equation for long-wavelength drift wave structures is derived with allowance for the nonuniformity of the plasma density and temperature equilibria, as well as the magnetic and collisional viscosity of the medium and its friction. The dynamic equation describes two types of nonlinearity: scalar (due to the temperature inhomogeneity) and vector (due to the convectively polarized motion of the particles of the medium). The equation is fourth order in the spatial derivatives, in contrast to the second-order Hasegawa-Mima equations. An analytic steady solution to the nonlinear equation is obtained that describes a new type of solitary dipole vortex. The nonlinear dynamic equation is integrated numerically. A new algorithm and a new finite difference scheme for solving the equation are proposed, and it is proved that the solution so obtained is unique. The equation is used to investigate how the initially steady dipole vortex constructed here behaves unsteadily under the action of the factors just mentioned. Numerical simulations revealed that the role of the vector nonlinearity is twofold: it helps the dispersion or the scalar nonlinearity (depending on their magnitude) to ensure the mutual equilibrium and, thereby, promote self-organization of the vortical structures. It is shown that dispersion breaks the initial dipole vortex into a set of tightly packed, smaller scale, less intense monopole vortices-alternating cyclones and anticyclones. When the dispersion of the evolving initial dipole vortex is weak, the scalar nonlinearity symmetrically breaks a cyclone-anticyclone pair into a cyclone and an anticyclone, which are independent of one another and have essentially the same intensity, shape, and size. The stronger the dispersion, the more anisotropic the process whereby the structures break: the anticyclone is more intense and localized, while the cyclone is less intense and has a larger size. In the course of further evolution, the cyclone persists for a relatively longer time, while the anticyclone breaks into small-scale vortices and dissipation hastens this process. It is found that the relaxation of the vortex by viscous dissipation differs in character from that by the frictional force. The time scale on which the vortex is damped depends strongly on its typical size: larger scale vortices are longer lived structures. It is shown that, as the instability develops, the initial vortex is amplified and the lifetime of the dipole pair components-cyclone and anticyclone-becomes longer. As time elapses, small-scale noise is generated in the system, and the spatial structure of the perturbation potential becomes irregular. The pattern of interaction of solitary vortex structures among themselves and with the medium shows that they can take part in strong drift turbulence and anomalous transport of heat and matter in an inhomogeneous magnetized plasma.

Keywords

Vortex Cyclone Vortex Structure Plasma Physic Report Plasma Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. B. Mikhailovskii, Theory of Plasma Instabilities, Vol. 2: Instabilities of an Inhomogeneous Plasma (Atomizdat, Moscow, 1971; Consultants Bureau, New York, 1974).Google Scholar
  2. 2.
    V. S. Mukhovatov, Itogi Nauki Tekh., Ser. Fiz. Plazmy 1, 6 (1980).ADSGoogle Scholar
  3. 3.
    W. Horton, in Basic Plasma Physics, Ed. by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983; Energoatomizdat, Moscow, 1984), Vol. 2.Google Scholar
  4. 4.
    B. B. Kadomtsev, Collective Phenomena in Plasma (Nauka, Moscow, 1976) [in Russian].Google Scholar
  5. 5.
    S. Migliuolo, J. Geophys. Res. A 89, 11023 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    Handbook of the Solar-Terrestrial Environment, Ed. by Y. Kamie and A. Chian (Springer-Verlag, Berlin, 2007).Google Scholar
  7. 7.
    B. B. Kadomtsev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1964; Consultants Bureau, New York, 1968), Vol. 4.Google Scholar
  8. 8.
    V. I. Petviashvili and O. A. Pokhotelov, Fiz. Plazmy 12, 1127 (1986) [Sov. J. Plasma Phys. 12, 651 (1986)].Google Scholar
  9. 9.
    W. Horton and A. Hasegawa, CHAOS 4, 227 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    G. D. Aburjania, Self-Organization of Nonlinear Vortex Structures and Vortex Turbulence in Dispersive Media (KomKniga, Moscow, 2006) [in Russian].Google Scholar
  11. 11.
    G. D. Aburdjania, Fiz. Plazmy 16, 70 (1990) [Sov. J. Plasma Phys. 16, 40 (1990)].Google Scholar
  12. 12.
    G. D. Aburjania, Kh. Z. Chargazia, L. M. Zelenyi, and G. Zimbardo, Nonlin. Processes Geophys. 16, 11 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    G. D. Aburjania, A. B. Mikhailovskii, and S. E. Sharapov, Plasma Phys. Controlled Fusion 26, 603 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    G. D. Aburjania, V. N. Ivanov, F. F. Kamenetz, and A. M. Pukhov, Phys. Scr. 35, 677 (1987).ADSCrossRefGoogle Scholar
  15. 15.
    T. D. Kaladze, G. D. Aburjania, O. A. Kharshiladze, et al., J. Geophys. Res. 109, A05302 (2004).CrossRefGoogle Scholar
  16. 16.
    G. D. Aburjania, Kh. Z. Chargazia, and O. A. Kharshiladza, J. Atmos. Sol.-Terr. Phys. 72, 971 (2010).CrossRefGoogle Scholar
  17. 17.
    A. B. Mikhailovskii, V. P. Lakhin, and L. A. Mikhailovskaya, Fiz. Plazmy 11, 836 (1985) [Sov. J. Plasma Phys. 11, 487 (1985)].Google Scholar
  18. 18.
    G. P. Williams and T. Yamagata, J. Atmos. Sci. 41, 453 (1984).ADSCrossRefGoogle Scholar
  19. 19.
    M. V. Nezlin and G. P. Chernikov, Fiz. Plazmy 21, 975 (1995) [Plasma Phys. Rep. 21, 922 (1995)].Google Scholar
  20. 20.
    W. Horton, Phys. Rep. 192, 1 (1990).ADSCrossRefGoogle Scholar
  21. 21.
    M. V. Nezlin, CHAOS 4, 187 (1994).ADSCrossRefGoogle Scholar
  22. 22.
    G. D. Aburdjania, Fiz. Plazmy 22, 954 (1996) [Plasma Phys. Rep. 22, 864 (1996)].Google Scholar
  23. 23.
    P. C. Liewer, Nucl. Fusion 25, 543 (1985).CrossRefGoogle Scholar
  24. 24.
    A. B. Mikhailovskii, V. P. Lakhin, G. D. Aburjania, et al., Plasma Phys. Controlled Fusion 29, 1 (1987).ADSCrossRefGoogle Scholar
  25. 25.
    V. D. Larichev and G. M. Reznik, Dokl. Akad. Nauk SSSR 231, 1077 (1976) [Sov. Phys. Doklady 21, 531 (1976)].Google Scholar
  26. 26.
    O. G. Onishchenko, O. G. Pokhotelov, V. P. Pavlenko, et al., Phys. Plasmas 8, 59 (2001).ADSCrossRefGoogle Scholar
  27. 27.
    A. G. Litvak and A. M. Sergeev, in High-Frequency Plasma Heating, Ed. by A. G. Litvak (IPF AN SSSR, Gorki, 1983; AIP, New York, 1991).Google Scholar
  28. 28.
    V. I. Pistunovich and G. E. Shatalov, Itogi Nauki Tekh., Ser. Fiz. 2, 138 (1981).Google Scholar
  29. 29.
    L. A. Hajkowicz, Planet. Space Sci. 39, 583 (1991).ADSCrossRefGoogle Scholar
  30. 30.
    Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, Ed. by M. Hayakawa (Terra Scientific, Tokyo, 1999).Google Scholar
  31. 31.
    V. I. Drobzhev, G. F. Moloetov, M. P. Rudina, et al., Ionos. Issled., No. 39, 61 (1986).Google Scholar
  32. 32.
    L. D. Shaefer, D. R. Rock, J. P. Lewis, et al., Preprint No. 94550 (Lawrence Livermore Laboratory, Livermore, CA, 1999).Google Scholar
  33. 33.
    V. I. Karpman, Nonlinear Waves in Dispersive Media (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).Google Scholar
  34. 34.
    G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974; Mir, Moscow, 1977).zbMATHGoogle Scholar
  35. 35.
    V. P. Starr, Physics of Negative Viscosity Phenomena (McGraw-Hill, New York, 1968; Mir, Moscow, 1971).Google Scholar
  36. 36.
    P. K. Shukla, M. Y. Yu, and N. L. Tsintsadze, Phys. Lett. A 121, 131 (1987).ADSCrossRefGoogle Scholar
  37. 37.
    A. B. Mikhailovskii, Instabilities in a Confined Plasma (Atomizdat, Moscow, 1978; IOP, Bristol, 1998).Google Scholar
  38. 38.
    T. Taniuti and A. Hasegawa, Phys. Scr. T2B, 529 (1982).ADSCrossRefGoogle Scholar
  39. 39.
    V. I. Petviashvili and A. P. Smirnov, Dokl. Akad. Nauk SSSR 277, 88 (1984).ADSGoogle Scholar
  40. 40.
    V. P. Pavlenko and V. B. Taranov, Fiz. Plazmy 10, 1303 (1984) [Sov. J. Plasma Phys. 10, 754 (1984)].Google Scholar
  41. 41.
    V. D. Larichev and G. M. Reznik, Dokl. Akad. Nauk SSSR 264, 229 (1982).Google Scholar
  42. 42.
    M. Makino, T. Kamimura, and T. Taniuti, J. Phys. Soc. Jpn. 50, 980 (1981).ADSCrossRefMathSciNetGoogle Scholar
  43. 43.
    J. C. McWilliams, G. R. Flierl, V. D. Larichev, and G. M. Reznik, Dyn. Atm. Ocean 5, 219 (1981).ADSCrossRefGoogle Scholar
  44. 44.
    L. A. Mikhailovskaya, Fiz. Plazmy 12, 879 (1986) [Sov. J. Plasma Phys. 12, 507 (1986)].Google Scholar
  45. 45.
    L. J. Campbell and S. A. Maslowe, J. Math. Comput. Simul. 55, 365 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961; Nauka, Moscow, 1971).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • G. D. Aburjania
    • 1
    • 3
  • D. L. Rogava
    • 1
    • 2
  • O. A. Kharshiladze
    • 2
    • 3
  1. 1.I. Vekua Institute of Applied MathematicsTbilisi State UniversityTbilisiGeorgia
  2. 2.Ivane Javakhishvili Tbilisi State UniversityTbilisiGeorgia
  3. 3.Nodia Institute of GeophysicsTbilisiGeorgia

Personalised recommendations