Advertisement

Plasma Physics Reports

, Volume 37, Issue 2, pp 118–160 | Cite as

Thin current sheets in collisionless plasma: Equilibrium structure, plasma instabilities, and particle acceleration

  • L. M. Zelenyi
  • H. V. Malova
  • A. V. Artemyev
  • V. Yu. Popov
  • A. A. Petrukovich
Space Plasma

Abstract

The review is devoted to plasma structures with an extremely small transverse size, namely, thin current sheets that have been discovered and investigated by spacecraft observations in the Earth’s magnetotail in the last few decades. The formation of current sheets is attributed to complicated dynamic processes occurring in a collisionless space plasma during geomagnetic perturbations and near the magnetic reconnection regions. The models that describe thin current structures in the Earth’s magnetotail are reviewed. They are based on the assumption of the quasi-adiabatic ion dynamics in a relatively weak magnetic field of the magnetotail neutral sheet, where the ions can become unmagnetized. It is shown that the ion distribution can be represented as a function of the integrals of particle motion—the total energy and quasi-adiabatic invariant. Various modifications of the initial equilibrium are considered that are obtained with allowance for the currents of magnetized electrons, the contribution of oxygen ions, the asymmetry of plasma sources, and the effects related to the non-Maxwellian particle distributions. The theoretical results are compared with the observational data from the Cluster spacecraft mission. Various plasma instabilities developing in thin current sheets are investigated. The evolution of the tearing mode is analyzed, and the parameter range in which the mode can grow are determined. The paradox of complete stabilization of the tearing mode in current sheets with a nonzero normal magnetic field component is thereby resolved based on the quasi-adiabatic model. It is shown that, over a wide range of current sheet parameters and the propagation directions of large-scale unstable waves, various modified drift instabilities—kink and sausage modes—can develop in the system. Based on the concept of a turbulent electromagnetic field excited as a result of the development and saturation of unstable waves, a mechanism for charged particle acceleration in turbulent current sheets is proposed and the energy spectra of the accelerated particles are obtained.

Keywords

Current Sheet Plasma Physic Report Interplanetary Magnetic Field Magnetic Reconnection COLLISIONLESS Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. I. Syrovatskii, Zh. Eksp. Teor. Fiz. 60, 1727 (1971) [Sov. Phys. JETP 33, 732 (1971)].Google Scholar
  2. 2.
    Basic Plasma Physics, Ed. by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983; Energoatomizdat, Moscow, 1983, 1984), Vols. 1, 2.Google Scholar
  3. 3.
    B. A. Tverskoi, in Problems in Plasma Theory, Ed. by A. G. Sitenko (Naukova Dumka, Kiev, 1972), pp. 396.Google Scholar
  4. 4.
    V. P. Shabanskii, Zh. Eksp. Teor. Fiz. 40, 1058 (1961) [Sov. Phys. JETP 13, 746 (1961)].Google Scholar
  5. 5.
    N. F. Ness, J. Geophys. Res. 70, 2989 (1965).ADSGoogle Scholar
  6. 6.
    W. I. Axford and C. O. Hines, in A Unifying Theory of High-Latitude Geophysical Phenomena and Geomagnetic Storms. The upper atmosphere in motion (Geophys. Mon. Ser. Vol. 18), Ed. by C. O. Hines (AGU, Washington, DC, 1974), p. 933.Google Scholar
  7. 7.
    I. I. Alexeev and V. V. Kalegaev, J. Geophys. Res. 100, 19 267 (1995).ADSGoogle Scholar
  8. 8.
    S. A. Fuselier, in Physics of the Magnetopause (Geophys. Mon. Ser. Vol. 90), Ed. by P. Song (AGU, Washington, DC, 1995), p. 181.Google Scholar
  9. 9.
    A. T. Y. Lui, J. Geophys. Res. 101, 13 067 (1996).ADSGoogle Scholar
  10. 10.
    L. V. Zelenyi and A. V. Milovanov, Usp. Fiz. Nauk 174, 809 (2004) [Phys. Usp. 47, 749 (2004)].Google Scholar
  11. 11.
    H. V. Malova, L. M. Zelenyi, O. V. Mingalev, et al., Fiz. Plazmy 36, 897 (2010) [Plasma Phys. Rep. 36, 841 (2010)].Google Scholar
  12. 12.
    A. Milovanov, L. Zelenyi, and G. Zimbardo, J. Geophys. Res. 101, 19 903 (1996).ADSGoogle Scholar
  13. 13.
    A. Milovanov, L. Zelenyi, G. Zimbardo, and P. Veltri, J. Geophys. Res. 106, 6291 (2001).ADSGoogle Scholar
  14. 14.
    M. K. Bird and D. B. Beard, Planet. Space Sci. 20, 2057 (1972).ADSGoogle Scholar
  15. 15.
    J. Birn, R. Sommer, and K. Schindler, Astrophys. Space Sci. 35, 389 (1975).ADSGoogle Scholar
  16. 16.
    E. Harris, Nuovo Cimento 23, 115 (1962).zbMATHGoogle Scholar
  17. 17.
    K. Schindler, in Earth’s Magnetospheric Processes, Ed. by B. M. McCormac, Astrophys. Space Sci. Library 32, 200 (1972).Google Scholar
  18. 18.
    R. Kan, J. Geophys. Res. 78, 3773 (1973).ADSGoogle Scholar
  19. 19.
    J. W. Eastwood, Planet. Space Sci. 20, 1555 (1972).ADSGoogle Scholar
  20. 20.
    T. W. Speiser, J. Geophys. Res. 70, 4219 (1965).ADSGoogle Scholar
  21. 21.
    O. V. Mingalev, I. V. Mingalev, H. V. Malova, et al., Fiz. Plazmy 35, 85 (2009) [Plasma Phys. Rep. 35, 76 (2009)].Google Scholar
  22. 22.
    A. P. Kropotkin and V. I. Domrin, J. Geophys. Res. 101, 19 893 (1996).ADSGoogle Scholar
  23. 23.
    A. P. Kropotkin, H. V. Malova, and M. I. Sitnov, J. Geophys. Res. 102, 22 099 (1997).ADSGoogle Scholar
  24. 24.
    M. I. Sitnov, M. Swisdak, P. N. Guzdar, and A. Runov, J. Geophys. Res. 111, A08 204 (2006).Google Scholar
  25. 25.
    X. Zhou, V. Angelopoulos, A. Runov, et al., J. Geophys. Res. 114, A03 223 (2009).Google Scholar
  26. 26.
    P. L. Pritchett and F. V. Coroniti, J. Geophys. Res. 97, 16 773 (1992).ADSGoogle Scholar
  27. 27.
    G. R. Burkhart, J. F. Drake, P. B. Dusenbery, and T. W. Speiser, J. Geophys. Res. 97, 13 799 (1992).ADSGoogle Scholar
  28. 28.
    M. M. Kuznetsova, M. Hesse, and D. Winske, J. Geophys. Res. 100, 21 827 (1995).ADSGoogle Scholar
  29. 29.
    P. J. Cargill, J. Chen, and J. B. Harold, Geophys. Res. Lett. 21, 2251 (1994).ADSGoogle Scholar
  30. 30.
    V. Peroomian, M. Ashour-Abdalla, and L. M. Zelenyi, J. Geophys. Res. 105, 18 807 (2000).ADSGoogle Scholar
  31. 31.
    J. Büchner and L. M. Zelenyi, J. Geophys. Res. 94, 11821 (1989).ADSGoogle Scholar
  32. 32.
    D. C. Delcourt, H. V. Malova, and L. M. Zelenyi, J. Geophys. Res. 109, A01 222 (2004).Google Scholar
  33. 33.
    D. C. Delcourt, J.-A. Sauvaud, R. F. Martin, Jr., and T. E. Moore, J. Geophys. Res. 101, 17 409 (1996).ADSGoogle Scholar
  34. 34.
    D. C. Delcourt and R. F. Martin, J. Geophys. Res. 99, 23 583 (1994).ADSGoogle Scholar
  35. 35.
    A. T. Y. Lui, J. Geophys. Res. 98, 13 423 (1993).ADSGoogle Scholar
  36. 36.
    A. Runov, V. A. Sergeev, R. Nakamura, et al., Ann. Geophys. 24, 247 (2006).ADSGoogle Scholar
  37. 37.
    L. D. Landau and E. M. Lifshitz, Mechanics (Nauka, Moscow, 1973; Pergamon, Oxford, 1976).Google Scholar
  38. 38.
    A. I. Neishtadt, Prikl. Mat. Mekh. 51, 750 (1987).MathSciNetGoogle Scholar
  39. 39.
    L. M. Zelenyi, D. C. Delcourt, H. V. Malova, et al., Adv. Space Res. 30, 1629 (2002).ADSGoogle Scholar
  40. 40.
    Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1965), Vol. 1Google Scholar
  41. 41.
    J. Birn, J. C. Dorelli, M. Hesse, and K. Schindler, J. Geophys. Res. 109, A02 215 (2004).Google Scholar
  42. 42.
    R. M. Kulsrud, in Basic Plasma Physics, Ed. by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983; Energoatomizdat, Moscow, 1983), Vol. 1.Google Scholar
  43. 43.
    L. M. Zelenyi, H. V. Malova, V. Y. Popov, et al., Nonlin. Processes Geophys. 11, 579 (2004).ADSGoogle Scholar
  44. 44.
    K. Schindler and J. Birn, J. Geophys. Res. 107, 1193 (2002).Google Scholar
  45. 45.
    F. Mottez, Phys. Plasmas 10, 2501 (2003).MathSciNetADSGoogle Scholar
  46. 46.
    W. Alpers, Astrophys. Space Sci. 5, 425 (1969).ADSGoogle Scholar
  47. 47.
    P. J. Channell, Phys. Fluids 19, 1541 (1976).ADSGoogle Scholar
  48. 48.
    L. M. Zelenyi, M. I. Sitnov, H. V. Malova, et al., Nonlin. Processes Geophys. 7, 127 (2000).ADSGoogle Scholar
  49. 49.
    E. V. Voronov and I. A. Krinberg, Geomagn. Aeron. 39, 24 (1999).Google Scholar
  50. 50.
    I. I. Alekseev and H. V. Malova, Geomagn. Aeron. 30, 407 (1990).ADSGoogle Scholar
  51. 51.
    O. V. Mingalev, I. V. Mingalev, H. V. Malova, et al., Fiz. Plazmy 33, 1028 (2007) [Plasma Phys. Rep. 33, 942 (2007)].Google Scholar
  52. 52.
    R. G. Giovanelli, Mon. Not. Roy. Astron. Soc. 107, 338 (1947).ADSzbMATHGoogle Scholar
  53. 53.
    V. M. Vasyliunas, Rev. Geophys. 13, 303 (1975).ADSGoogle Scholar
  54. 54.
    Flare Processes in Plasma, Ed. by N. G. Basov (Nauka, Moscow, 1979), Tr. FIAN 110 (1979) [in Russian].Google Scholar
  55. 55.
    H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963).ADSGoogle Scholar
  56. 56.
    B. Coppi, G. Laval, and R. Pellat, Phys. Rev. Lett. 16, 1207 (1966).ADSGoogle Scholar
  57. 57.
    M. Dobrowolny, Nuovo Cimento B 55, 427 (1968).ADSGoogle Scholar
  58. 58.
    A. A. Galeev and L. M. Zelenyi, Pis’ma Zh. Eksp. Teor. Fiz. 22, 360 (1975) [JETP Lett. 22, 170 (1975)].Google Scholar
  59. 59.
    K. Schindler, J. Geophys. Res. 79, 2803 (1974).ADSGoogle Scholar
  60. 60.
    A. A. Galeev and L. M. Zelenyi, Zh. Eksp. Teor. Fiz. 70, 2133 (1976) [Sov. Phys. JETP 43, 1113 (1976)].ADSGoogle Scholar
  61. 61.
    A. A. Galeev, F. V. Coroniti, and M. Ashour-Abdalla, Geophys. Res. Lett. 5, 707 (1978).ADSGoogle Scholar
  62. 62.
    A. A. Galeev, L. M. Zelenyi, and M. M. Kuznetsova, Pis’ma Zh. Eksp. Teor. Fiz. 41, 316 (1985) [JETP Lett. 41, 387 (1985)].Google Scholar
  63. 63.
    B. Lembege and R. Pellat, Phys. Fluids 25, 1995 (1982).ADSzbMATHGoogle Scholar
  64. 64.
    H. Goldstein and K. Schindler, Phys. Rev. Lett. 48, 1468 (1982).ADSGoogle Scholar
  65. 65.
    F. V. Coroniti, J. Geophys. Res. 85, 6719 (1980).ADSGoogle Scholar
  66. 66.
    L. M. Zelenyi and A. L. Taktakishvili, Fiz. Plazmy 7, 1064 (1981) [Sov. J. Plasma Phys. 7, 585 (1981)].Google Scholar
  67. 67.
    J. Büchner and L. M. Zelenyi, J. Geophys. Res. 92, 13456 (1987).ADSGoogle Scholar
  68. 68.
    M. I. Sitnov, H. V. Malova, and A. S. Sharma, Fiz. Plazmy 25, 3 (1999) [Plasma Phys. Rep. 25, 1 (1999)].Google Scholar
  69. 69.
    R. Pellat, F. V. Coroniti, and P. L. Pritchett, Geophys. Res. Lett. 18, 143 (1991).ADSGoogle Scholar
  70. 70.
    K. B. Quest, H. Karimabadi, and M. Brittnacher, J. Geophys. Res. 101, 179 (1996).ADSGoogle Scholar
  71. 71.
    V. Angelopoulos, J. P. McFadden, D. Larson, et al., Science 321, 931 (2008).ADSGoogle Scholar
  72. 72.
    A. A. Petrukovich, W. Baumjohann, R. Nakamura, and H. Rème, J. Geophys. Res. 114, A09 203 (2009).Google Scholar
  73. 73.
    A. A. Petrukovich, W. Baumjohann, R. Nakamura, et al., J. Geophys. Res. 112, A10 213 (2007).Google Scholar
  74. 74.
    A. Runov, W. Baumjohann, R. Nakamura, et al., J. Geophys. Res. 113, A07 S27 (2008).Google Scholar
  75. 75.
    T. D. Phan, J. F. Drake, M. A. Shay, et al., Phys. Rev. Lett. 99, 255 002 (2007).Google Scholar
  76. 76.
    M. W. Dunlop, Q.-H. Zhang, C.-J. Xiao, et al., Phys. Rev. Lett. 102, 075 005 (2009).Google Scholar
  77. 77.
    C. J. Xiao, X. G. Wang, Z. Y. Pu, et al., Nature Phys. 2, 478 (2006).ADSGoogle Scholar
  78. 78.
    W. Zwingmann, J. Geophys. Res. 88, 9101 (1983).ADSGoogle Scholar
  79. 79.
    L. M. Zelenyi and V. V. Krasnosel’skikh, Astron. Zh. 56, 819 (1979) [Sov. Astron. 23, 460 (1979)].ADSGoogle Scholar
  80. 80.
    L. M. Zelenyi and M. M. Kuznetsova, Fiz. Plazmy 15, 1214 (1989) [Sov. J. Plasma Phys. 15, 704 (1989)].Google Scholar
  81. 81.
    G. R. Burkhart, J. F. Drake, P. B. Dusenbery, and T. W. Speiser, J. Geophys. Res. 97, 16 749 (1992).ADSGoogle Scholar
  82. 82.
    V. M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968).ADSGoogle Scholar
  83. 83.
    E. T. Sarris, S. M. Krimigis, and T. P. Armstrong, J. Geophys. Res. 81, 2341 (1976).ADSGoogle Scholar
  84. 84.
    S. P. Christon, D. J. Williams, D. G. Mitchell, et al., J. Geophys. Res. 94, 13 409 (1989).ADSGoogle Scholar
  85. 85.
    L. R. Lyons and T. W. Speiser, J. Geophys. Res. 87, 2276 (1982).ADSGoogle Scholar
  86. 86.
    L. M. Zelenyi and A. L. Taktakishvili, Pis’ma Astron. Zh. 14, 182 (1988) [Sov. Astron. Lett. 14, 76 (1988)].ADSGoogle Scholar
  87. 87.
    S. V. Bulanov and P. V. Sasorov, Astron. Zh. 52, 763 (1975) [Sov. Astron. 19, 464 (1975)].ADSGoogle Scholar
  88. 88.
    S. V. Bulanov, Pis’ma Astron. Zh. 6, 372 (1980) [Sov. Astron. Lett. 6, 206 (1980)].ADSGoogle Scholar
  89. 89.
    A. A. Galeev, Space Sci. Rev. 23, 411 (1979).ADSGoogle Scholar
  90. 90.
    L. M. Zelenyi, A. S. Lipatov, D. G. Lominadze, et al., Planet. Space Sci. 32, 313 (1984).ADSGoogle Scholar
  91. 91.
    A. L. Taktakishvili, L. M. Zelenyi, V. N. Lutsenko, et al., Cosmic Res. 36, 265 (1998).ADSGoogle Scholar
  92. 92.
    G. F. Chew, M. L. Goldberger, and F. E. Low, Proc. Roy. Soc. A 236, 112 (1956).MathSciNetADSzbMATHGoogle Scholar
  93. 93.
    F. A. Frank-Kamenetskii, Course of Plasma Physics (Atomizdat, Moscow, 1968) [in Russian].Google Scholar
  94. 94.
    L. M. Zelenyi, D. C. Delcourt, H. V. Malova, and A. S. Sharma, Geophys. Res. Lett. 29, 1608 (2002).ADSGoogle Scholar
  95. 95.
    A. A. Bykov, L. M. Zelenyi, and H.V. Malova, Fiz. Plazmy 34, 148 (2008) [Plasma Phys. Rep. 34, 128 (2008)].Google Scholar
  96. 96.
    L. Zelenyi, M. Oka, H. Malova, et al., Space Sci. Rev. 132, 593 (2007).ADSGoogle Scholar
  97. 97.
    L. M. Zelenyi, H. V. Malova, V. Y. Popov, and D. Delcourt, in EGU General Assembly 2010, Vienna, 2010, Geophys. Res. Abstracts 12, Paper EGU-2010-6632.Google Scholar
  98. 98.
    H. V. Malova, L. M. Zelenyi, V. Y. Popov, et al., Geophys. Res. Lett. 34, L16 108 (2007).Google Scholar
  99. 99.
    L. M. Zelenyi, M. S. Dolgonosov, E. E. Grigorenko, et al., Pis’ma Zh. Eksp. Teor. Fiz. 85, 225 (2007) [JETP Lett. 85, 187 (2007)].Google Scholar
  100. 100.
    L. M. Zelenyi, H. V. Malova, V. Yu. Popov, et al., in Solar-Terrestrial Physics, Vol. 12 (1) (Izd-vo SO RAN, Novosibirsk, 2008), p. 122 [in Russian].Google Scholar
  101. 101.
    L. M. Zelenyi, H. V. Malova, V. Y. Popov, et al., Geophys. Res. Lett. 33, L05 105 (2006).Google Scholar
  102. 102.
    L. M. Kistler, C. Mouicis, E. Möbius, et al., J. Geophys. Res. 110, A06 213 (2005).Google Scholar
  103. 103.
    A. A. Petrukovich, A. V. Artemyev, and H. V. Malova, et al., J. Geophys. Res. 116 (2011) (in press).Google Scholar
  104. 104.
    V. A. Sergeev, D. G. Mitchell, C. T. Russell, and D. J. Williams, J. Geophys. Res. 98, 17 345 (1993).ADSGoogle Scholar
  105. 105.
    D. G. Mitchell, D. J. Williams, C. Y. Huang, et al., Geophys. Res. Lett. 17, 583 (1990).ADSGoogle Scholar
  106. 106.
    R. Nakamura, W. Baumjohann, A. Runov, et al., Space Sci. Rev. 122, 29 (2006).ADSGoogle Scholar
  107. 107.
    E. V. Panov, J. Büchner, M. Fränz, et al., J. Geophys. Res. 113, A01 220 (2008).Google Scholar
  108. 108.
    Y. Asano, R. Nakamura, W. Baumjohann, et al., Geophys. Res. Lett. 32, L03 108 (2005).Google Scholar
  109. 109.
    A. V. Artemyev, A. A. Petrukovich, L. M. Zelenyi, et al., Ann. Geophys. 26, 2749 (2008).ADSGoogle Scholar
  110. 110.
    A. V. Artemyev, A. A. Petrukovich, L. M. Zelenyi, et al., Ann. Geophys. 27, 4075 (2009).ADSGoogle Scholar
  111. 111.
    A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi, J. Geophys. Res. 115, A112255 (2010).Google Scholar
  112. 112.
    V. M. Gubchenko, Fiz. Plazmy 11, 467 (1985) [Sov. J. Plasma Phys. 11, 272 (1985)].Google Scholar
  113. 113.
    P. L. Pritchett, F. V. Coroniti, and V. K. Decyk, J. Geophys. Res. 101, 27 413 (1996).ADSGoogle Scholar
  114. 114.
    W. Daughton, J. Geophys. Res. 104, 28 701 (1999).ADSGoogle Scholar
  115. 115.
    W. Daughton, Phys. Plasmas 6, 1329 (1999).ADSGoogle Scholar
  116. 116.
    H. Karimabadi, P. L. Pritchett, W. Daughton, and D. Krauss-Varban, J. Geophys. Res. 108, 1401 (2003).Google Scholar
  117. 117.
    N. V. Erkaev, V. S. Semenov, and H. K. Biernat, Geophys. Res. Lett. 35, L02 111 (2008).Google Scholar
  118. 118.
    Z. Zhu and R. M. Winglee, J. Geophys. Res. 101, 4885 (1996).ADSGoogle Scholar
  119. 119.
    S. Zenitani and M. Hoshino, Phys. Rev. Lett. 95, 095001 (2005).ADSGoogle Scholar
  120. 120.
    S. Zenitani and M. Hoshino, Astrophys. J. 677, 530 (2008).ADSGoogle Scholar
  121. 121.
    L. Yin, W. Daughton, H. Karimabadi, et al., Phys. Rev. Lett. 101, 125 001 (2008).Google Scholar
  122. 122.
    W. Daughton, Phys. Plasmas 10, 3103 (2003).ADSGoogle Scholar
  123. 123.
    M. I. Sitnov, A. T. Y. Lui, P. N. Guzdar, and P. H. Yoon, J. Geophys. Res. 109, A03 205 (2004).Google Scholar
  124. 124.
    I. Silin, J. Büchner, and L. Zelenyi, Phys. Plasmas 9, 1104 (2002).MathSciNetADSGoogle Scholar
  125. 125.
    G. Lapenta and J. U. Brackbill, J. Geophys. Res. 102, 27 099 (1997).ADSGoogle Scholar
  126. 126.
    J. Büchner and J. Kuska, Ann. Geophys. 17, 604 (1999).ADSGoogle Scholar
  127. 127.
    A. A. Galeev, M. M. Kuznetsova, and L. M. Zelenyi, Space Sci. Rev. 44, 1 (1986).ADSGoogle Scholar
  128. 128.
    A. V. Artem’ev, L. M. Zelenyi, H. V. Malova, et al., Fiz. Plazmy 34, 834 (2008) [Plasma Phys. Rep. 34, 771 (2008)].Google Scholar
  129. 129.
    L. M. Zelenyi, A. V. Artemyev, A. A. Petrukovich, et al., Ann. Geophys. 27, 861 (2009).ADSGoogle Scholar
  130. 130.
    L. M. Zelenyi and M. M. Kuznetsova, Fiz. Plazmy 10, 326 (1984) [Sov. J. Plasma Phys. 10, 190 (1984)].Google Scholar
  131. 131.
    A. A. Petrukovich, Ann. Geophys. 27, 1343 (2009).ADSGoogle Scholar
  132. 132.
    L. M. Zelenyi, A. Galeev, and C. F. Kennel, J. Geophys. Res. 95, 3871 (1990).ADSGoogle Scholar
  133. 133.
    A. T. Y. Lui, C. Meng, and S. Akasofu, Geophys. Res. Lett. 5, 279 (1978).ADSGoogle Scholar
  134. 134.
    V. Sergeev, V. Angelopoulos, C. Carlson, and P. Sutcliffe, J. Geophys. Res. 103, 9177 (1998).ADSGoogle Scholar
  135. 135.
    T. L. Zhang, W. Baumjohann, R. Nakamura, et al., Geophys. Res. Lett. 29, 1899 (2002).ADSGoogle Scholar
  136. 136.
    T. L. Zhang, R. Nakamura, M. Volwerk, et al., Ann. Geophys. 23, 2909 (2005).ADSGoogle Scholar
  137. 137.
    A. Runov, V. A. Sergeev, W. Baumjohann, et al., Ann. Geophys. 23, 1391 (2005).ADSGoogle Scholar
  138. 138.
    A. A. Petrukovich, T. L. Zhang, W. Baumjohann, et al., Ann. Geophys. 24, 1695 (2006).ADSGoogle Scholar
  139. 139.
    V. A. Sergeev, D. A. Sormakov, S. V. Apatenkov, et al., Ann. Geophys. 24, 2015 (2006).ADSGoogle Scholar
  140. 140.
    A. Runov, V. Angelopoulos, V. A. Sergeev, et al., Ann. Geophys. 27, 319 (2009).ADSGoogle Scholar
  141. 141.
    V. Angelopoulos, C. F. Kennel, F. V. Coroniti, et al., Geophys. Res. Lett. 20, 1711 (1993).ADSGoogle Scholar
  142. 142.
    M. Hoshino, A. Nishida, T. Mukai, et al., J. Geophys. Res. 101, 24 775 (1996).ADSGoogle Scholar
  143. 143.
    A. A. Petrukovich, W. Baumjohann, R. Nakamura, et al., Ann. Geophys. 26, 3669 (2008).ADSGoogle Scholar
  144. 144.
    L. M. Zelenyi, A. V. Artemyev, H. V. Malova, et al., J. Atmos. Solar-Terr. Phys. 70, 325 (2008).Google Scholar
  145. 145.
    K. Schindler, Physics of Space Plasma Activity (Cambridge University Press, Cambridge, 2006).Google Scholar
  146. 146.
    J. F. Drake, M. Swisdak, H. Che, et al., Nature 443, 553 (2006).ADSGoogle Scholar
  147. 147.
    M. M. Molodenskii and S. I. Syrovatskii, Astron. Zh. 54, 1293 (1977) [Sov. Astron. 21, 734 (1977)].ADSGoogle Scholar
  148. 148.
    P. Pritchett, J. Geophys. Res. 111, A10 212 (2006).Google Scholar
  149. 149.
    M. Hoshino, J. Geophys. Res. 110, A10215 (2005).ADSGoogle Scholar
  150. 150.
    T. Kobak and M. Ostrowski, Mon. Not. Roy. Astron. Soc. 317, 973 (2000).ADSGoogle Scholar
  151. 151.
    P. Dmitruk, W. H. Matthaeus, and N. Seenu, Astrophys. J. 617, 667 (2004).ADSGoogle Scholar
  152. 152.
    M. Onofri, H. Isliker, and L. Vlahos, Phys. Rev. Lett. 96, 151102 (2006).ADSGoogle Scholar
  153. 153.
    S. Perri, A. Greco, and G. Zimbardo, Geophys. Res. Lett. 36, L04 103 (2009).Google Scholar
  154. 154.
    A. Greco, S. Perri, and G. Zimbardo, J. Geophys. Res. 115, A02203 (2010).Google Scholar
  155. 155.
    A. Loskutov, A. B. Ryabov, and L. G. Akinshin, J. Phys. A 33, 7973 (2000).MathSciNetADSzbMATHGoogle Scholar
  156. 156.
    T. W. Speiser, J. Geophys. Res. 72, 3919 (1967).ADSGoogle Scholar
  157. 157.
    P. Veltri, G. Zimbardo, A. L. Taktakishvili, and L. M. Zelenyi, J. Geophys. Res. 103, 14 897 (1998).ADSGoogle Scholar
  158. 158.
    A. Greco, A. L. Taktakishvili, G. Zimbardo, et al., J. Geophys. Res. 107, 1267 (2002).Google Scholar
  159. 159.
    V. Carbone, F. Lepreti, and P. Veltri, Phys. Plasmas 11, 103 (2004).ADSGoogle Scholar
  160. 160.
    L. Zelenyi, A. Artemyev, H. Malova, et al., Phys. Lett. A 372, 6284 (2008).ADSzbMATHGoogle Scholar
  161. 161.
    A. V. Artemyev, L. M. Zelenyi, H. Malova, et al., Nonlin. Processes Geophys. 16, 631 (2009).ADSGoogle Scholar
  162. 162.
    M. Hoshino, A. Nishida, T. Yamamoto, and S. Kokubun, Geophys. Res. Lett. 21, 2935 (1994).ADSGoogle Scholar
  163. 163.
    A. A. Petrukovich, in Nonequilibrium Phenomena in Plasmas, Ed. by A. S. Sharma and P. K. Kaw, Astrophys. Space Sci. Library 321, 145 (2005).Google Scholar
  164. 164.
    T. I. Pulkkinen, D. N. Baker, C. J. Owen, et al., Geophys. Res. Lett. 20, 2427 (1993).ADSGoogle Scholar
  165. 165.
    L. M. Zelenyi, A. V. Artemyev, H. V. Malova, et al., Usp. Fiz. Nauk 180, 973 (2010) [Phys. Usp. 53, 933 (2010)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • L. M. Zelenyi
    • 1
  • H. V. Malova
    • 1
    • 2
  • A. V. Artemyev
    • 1
    • 2
  • V. Yu. Popov
    • 1
    • 3
  • A. A. Petrukovich
    • 1
  1. 1.Space Research InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations