Plasma Physics Reports

, Volume 36, Issue 13, pp 1087–1094 | Cite as

Quantum nature of the damping of Langmuir oscillations and the boson peak in plasma

  • B. A. Veklenko
Plasma Physics


It is shown that the damping of Langmuir plasma oscillations is quantum in nature and that the damping rate, which is proportional to the fourth power of the electron charge, is caused by thermal electron fluctuations and depends nonanalytically on the Plank constant ℏ at ℏ → 0. At frequencies of ∼T/ℏ, the damping rate has a maximum, which can be identified with a boson peak.


Plasma Physic Report Polarization Operator Quantum Nature Boson Peak Fluctuation Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Benassi, M. Krisch, C. Masciovecchio, et al., Phys. Rev. Lett. 77, 3835 (1996).CrossRefADSGoogle Scholar
  2. 2.
    M. Foret, E. Courtens, R. Vacher, and J. B. Suck, Phys. Rev. Lett. 77, 3831 (1996).CrossRefADSGoogle Scholar
  3. 3.
    G. Ruocco, F. Sette, R. Di. Leonardo, et al., Phys. Rev. Lett. 83, 5583 (1999).CrossRefADSGoogle Scholar
  4. 4.
    U. Buchenau, M. Prager, N. Nucker, et al., Phys. Rev. B 34, 5665 (1986).CrossRefADSGoogle Scholar
  5. 5.
    Yu. G. Vainer, A. V. Naumov, M. Bauer, and L. Kador, Phys. Rev. Lett. 97, 185 501 (2006).CrossRefGoogle Scholar
  6. 6.
    B. A. Veklenko, Prikl. Fiz., No. 1, 5 (2008).Google Scholar
  7. 7.
    T. Scopigno, J. B. Suck, R. Angelini, et al., Phys. Rev. Lett. 96, 135 501 (2006).CrossRefGoogle Scholar
  8. 8.
    B. Ruffle, G. Guimbretiere, E. Courtens, et al., Phys. Rev. Lett. 96, 045 502 (2006).CrossRefGoogle Scholar
  9. 9.
    M. I. Klinger and L. Vatova, Phys. Rev. B 72, 134 206 (2005).CrossRefGoogle Scholar
  10. 10.
    S.-H. Chong, Phys. Rev. E 74, 031 205 (2006).CrossRefGoogle Scholar
  11. 11.
    S. Ciliberti, T. S. Grigera, V. Martin-Mayor, et al., J. Chem. Phys. 119, 8577 (2003).CrossRefADSGoogle Scholar
  12. 12.
    A. A. Vlasov, Zh. Éksp. Teor. Fiz. 8, 291 (1938).Google Scholar
  13. 13.
    L. D. Landau, Zh. Éksp. Teor. Fiz. 16, 574 (1946).Google Scholar
  14. 14.
    A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1978; Springer-Verlag, Berlin, 1984).Google Scholar
  15. 15.
    A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Fizmatgiz, Moscow, 1962; Prentice-Hall, Englewood Cliffs, NJ, 1963).Google Scholar
  16. 16.
    G. B. Tkachuk, Tr. Mosk. Énerg. Inst., No. 350, 26 (1978).Google Scholar
  17. 17.
    M. V. Kuzelev and A. A. Rukhadze, Usp. Fiz. Nauk 169, 687 (1999) [Phys. Usp. 42, 603 (1999)].CrossRefGoogle Scholar
  18. 18.
    I. I. Sobel’man, Usp. Fiz. Nauk 172, 85 (2002) [Phys. Usp. 45, 75 (2002)].CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • B. A. Veklenko
    • 1
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations