Plasma Physics Reports

, Volume 37, Issue 2, pp 177–190 | Cite as

Self-organization of large-scale ULF electromagnetic wave structures in their interaction with nonuniform zonal winds in the ionospheric E region

  • G. D. Aburjania
  • Kh. Z. Chargazia
Ionospheric Plasma


A study is made of the generation and subsequent linear and nonlinear evolution of ultralow-frequency planetary electromagnetic waves in the E region of a dissipative ionosphere in the presence of a nonuniform zonal wind (a sheared flow). Hall currents flowing in the E region and such permanent global factors as the spatial nonuniformity of the geomagnetic field and of the normal component of the Earth’s angular velocity give rise to fast and slow planetary-scale electromagnetic waves. The efficiency of the linear amplification of planetary electromagnetic waves in their interaction with a nonuniform zonal wind is analyzed. When there are sheared flows, the operators of linear problems are non-self-conjugate and the corresponding eigenfunctions are nonorthogonal, so the canonical modal approach is poorly suited for studying such motions and it is necessary to utilize the so-called nonmodal mathematical analysis. It is shown that, in the linear evolutionary stage, planetary electromagnetic waves efficiently extract energy from the sheared flow, thereby substantially increasing their amplitude and, accordingly, energy. The criterion for instability of a sheared flow in an ionospheric medium is derived. As the shear instability develops and the perturbation amplitude grows, a nonlinear self-localization mechanism comes into play and the process ends with the self-organization of nonlinear, highly localized, solitary vortex structures. The system thus acquires a new degree of freedom, thereby providing a new way for the perturbation to evolve in a medium with a sheared flow. Depending on the shape of the sheared flow velocity profile, nonlinear structures can be either purely monopole vortices or vortex streets against the background of the zonal wind. The accumulation of such vortices can lead to a strongly turbulent state in an ionospheric medium.


Vortex Sheared Flow Zonal Wind Plasma Physic Report Vortex Street 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Cavalieri, R. J. Deland, J. A. Poterna, and F. Gavin, J. Atmos. Terr. Phys. 36, 561 (1974).ADSCrossRefGoogle Scholar
  2. 2.
    A. H. Manson, C. E. Heek, and J. B. Gregory, J. Geophys. Res. 86, 9615 (1981).ADSCrossRefGoogle Scholar
  3. 3.
    Z. S. Sharadze, N. V. Mosashvili, G. N. Pushkova, and L. A. Yudovich, Geomagn. Aéron. 29, 1032 (1989).Google Scholar
  4. 4.
    Q. H. Zhou, M. P. Sulzer, and C. A. Tepley, J. Geophys. Res. 102, 491 (1997).Google Scholar
  5. 5.
    L. S. Al’perovich, V. I. Drobzhev, V. M. Sorokin, et al., Geomagn. Aéron. 22, 797 (1982).Google Scholar
  6. 6.
    Z. S. Sharadze, G. A. Dzhaparidze, G. B. Kikvilashvili, et al., Geomagn. Aéron. 28, 446 (1988).Google Scholar
  7. 7.
    P. R. Fagundes, V. G. Pillat, M. J. Bolzan, et al., J. Geophys. Res. 110, 1302 (2005).CrossRefGoogle Scholar
  8. 8.
    V. Sorokin, Izv. Vyssh. Uchebn. Zaved., Radiofizika 31, 1169 (1988) [Radiophys. Quant. Electron. 31, 827 (1988)]].Google Scholar
  9. 9.
    V. P. Burmaka, L. S. Kostrov, and L. F. Chernogor, Radiofiz. Radioastron. 8(2), 143 (2003).Google Scholar
  10. 10.
    L. A. Haykowicz, Planet. Space Sci. 39, 583 (1991).ADSCrossRefGoogle Scholar
  11. 11.
    V. A. Liperovskii, O. A. Pokhotelov, and S. A. Shalimov, Ionospheric Precursors of Earthquakes (Nauka, Moscow, 1992) [in Russian].Google Scholar
  12. 12.
    K. Y. Cheng, J. Geophys. Res. 97, 16 (1992).Google Scholar
  13. 13.
    V. I. Drobzhev, G. F. Molotov, Z. S. Sharadze, et al., Ionos. Issled., No. 39, 61 (1986).Google Scholar
  14. 14.
    N. Rishbeth, Geophys. Space Phys. 10, 799 (1972).ADSCrossRefGoogle Scholar
  15. 15.
    G. D. Aburjania and A. G. Khantadze, Izv. RAN. Fiz. Atmos. Okeana 40(2), 231 (2004).Google Scholar
  16. 16.
    L. D. Shaefer, D. R. Rock, J. P. Lewis, et al., Detection of Explosive Events by Monitoring Acoustically-Induced Geomagnetic Perturbations (Lawrence Livermore National Laboratory, Livermore, CA, 1999).Google Scholar
  17. 17.
    O. A. Pokhotelov, V. A. Liperovskii, Yu. P. Fomichev, et al., Dokl. Akad. Nauk SSSR 321, 1168 (1991).ADSGoogle Scholar
  18. 18.
    I. Tolstoy, J. Geophys. Res. 7, 1435 (1967).ADSCrossRefGoogle Scholar
  19. 19.
    A. G. Kobaladze and A. G. Khantadze, Soobshch. Akad. Nauk Gruz. SSR 134(1), 97 (1989).ADSGoogle Scholar
  20. 20.
    G. D. Aburjania and A. G. Khantadze, Geomagn. Aéron. 42, 245 (2002).Google Scholar
  21. 21.
    G. D. Aburjania, A. G. Khantadze, and O. A. Kharshiladze, Fiz. Plazmy 28, 633 (2002) [Plasma Phys. Rep. 28, 586 (2002)].Google Scholar
  22. 22.
    G. D. Aburjania, G. V. Jandieri, and A. G. Khantadze, J. Atmos. Sol.-Terr. Phys. 65, 661 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    G. D. Aburjania, Kh. Z. Chargazia, G. V. Jandieri, et al., Recent Res. Devel. Geophys. 5, 157 (2003).Google Scholar
  24. 24.
    G. D. Aburjania, A. G. Khantadze, and Kh. Z. Chargazia, Izv. RAN, Fiz. Atmos. Okeana 39, 525 (2003).Google Scholar
  25. 25.
    G. D. Aburjania, Kh. Z. Chargazia, G. V. Jandieri, et al., Ann. Geophys. 22, 1203 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    A. Khantadze, G. D. Aburjania, and D. G. Lominadze, Dokl. Akad. Nauk 406(2), 244 (2006) [Doklady Phys. 406, 82 (2006)].Google Scholar
  27. 27.
    G. D. Aburjania, Kh. Z. Chargazia, G. V. Jandieri, et al., Planet. Space Sci. 53, 881 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    G. D. Aburjania and A. Khantadze, Geomagn. Aéron 45, 673 (2005).Google Scholar
  29. 29.
    G. D. Aburjania, L. S. Alperovich, A. G. Khantadze, and O. A. Kharshiladze, Phys. Chem. Earth 31, 482 (2006).Google Scholar
  30. 30.
    G. D. Aburjania, Kh. Chargazia, and A. G. Khanadze, Sun Geosphere 1(2), 25 (2006).Google Scholar
  31. 31.
    G. D. Aburjania, L. S. Alperovich, A. G. Khantadze, and O. A. Kharshiladze, Adv. Space Res. 41, 624 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    E. Gossard and W. Hooke, Waves in the Atmosphere (Elsevier, Amsterdam, 1975; Mir, Moscow, 1978).Google Scholar
  33. 33.
    E. S. Kazimirovsky and V. D. Kokourov, Motion in the Ionosphere (Nauka, Novosibirsk, 1979) [in Russian].Google Scholar
  34. 34.
    S. C. Reddy, P. J. Schmid, and D. S. Hennigson, SIAM J. Appl. Math. 53, 15 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    L. N. Trefenthen, A. E. Trefenthen, S. C. Reddy, and T. A. Driscoll, Science 261, 578 (1993).MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    G. D. Aburjania, A. G. Khantadze, and O. A. Kharshiladze, J. Geophys. Res. 111 (2006).Google Scholar
  37. 37.
    A. D. D. Graik and W. O. Criminale, Proc. Roy. Soc. London A 406, 13 (1986).ADSCrossRefGoogle Scholar
  38. 38.
    B. F. Farrell and P. J. Ioannou, J. Atmos. Sci. 50, 2201 (1993).MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    G. D. Chagelishvili, A. D. Rogava, and D. G. Tsiklauri, Phys. Rev. E 53, 6028 (1996).ADSCrossRefGoogle Scholar
  40. 40.
    Y. Kamide, Electrodynamical Processes in the Earth’s Ionosphere and Magnetosphere (Kyoto Sangyo University Press, Kyoto, 1980).Google Scholar
  41. 41.
    R. E. Dickinson, J. Atmos. Sci. 26(14), 73 (1969).MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    B. N. Gershman, Dynamics of the Ionospheric Plasma (Nauka, Moscow, 1974) [in Russian].Google Scholar
  43. 43.
    V. P. Dokuchaev, Izv. Vyssh. Uchebn. Zaved., Radiofizika 4(1), 6 (1961).Google Scholar
  44. 44.
    J. Pedlosky, Geophysical Fluid Dynamics (Springer, Heidelberg, 1981; Mir, Moscow, 1984), Vol. 1.Google Scholar
  45. 45.
    V. M. Sorokin and G. V. Fedorovich, Physics of Slow MHD Waves in the Ionospheric Plasma (Energoizdat, Moscow, 1982) [in Russian].Google Scholar
  46. 46.
    A. B. Mikhailovskii, Theory of Plasma Instabilities, Vol. 2: Instabilities of an Inhomogeneous Plasma (Atomizdat, Moscow, 1971; Consultants Bureau, New York, 1974).Google Scholar
  47. 47.
    K. Magnus, Schwingungen (Teubner, Stuttgart, 1961; Mir, Moscow, 1982).zbMATHGoogle Scholar
  48. 48.
    Ya. B. Zel’dovich and A. D. Myshkis, Elements of Mathematical Physics (Nauka, Moscow, 1973) [in Russian].Google Scholar
  49. 49.
    A. V. Timofeev, Resonance Phenomena in Plasma Oscillations (Fizmatlit, Moscow, 2000) [in Russian].Google Scholar
  50. 50.
    Intense Atmospheric Vortices, Ed. by L. Bengtsson and J. Lighthill (Springer-Verlag, New York, 1982; Mir, Moscow, 1985).Google Scholar
  51. 51.
    V. M. Cmyrev, V. A. Marchenko, O. A. Pokhotelov, et al., Planet. Space Sci. 39, 1025 (1991).ADSCrossRefGoogle Scholar
  52. 52.
    M. V. Nezlin, CHAOS 4, 187 (1994).ADSCrossRefGoogle Scholar
  53. 53.
    D. Sundkvist, V. Krasnoselskikh, P. K. Shukla, et al., Nature 436, 825 (2005).ADSCrossRefGoogle Scholar
  54. 54.
    Ocean Physics, Vol. 2: Ocean Hydrodynamics, Ed. by V. M. Kamenkovich and A. S. Monin (Nauka, Moscow, 1978).Google Scholar
  55. 55.
    G. P. Williams and T. Yamagata, J. Atmos. Sci. 41, 453 (1984).ADSCrossRefGoogle Scholar
  56. 56.
    M. V. Nezlin and G. P. Chernikov, Fiz. Plazmy 21, 975 (1995) [Plasma Phys. Rep. 21, 922 (1995)].Google Scholar
  57. 57.
    G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974; Mir, Moscow, 1977).zbMATHGoogle Scholar
  58. 58.
    N. P. Shakina, Dynamics of Atmospheric Fronts and Cyclones (Gidrometizdat, Leningrad, 1985) [in Russian].Google Scholar
  59. 59.
    G. D. Aburjania, Self-Organization of Nonlinear Vortex Structures and Vortex Turbulence in Dispersive Media (KomKniga, Moscow, 2006) [in Russian].Google Scholar
  60. 60.
    V. I. Petviashvili and O. A. Pokhotelov, Solitary Waves in Plasmas and in the Atmosphere (Energoatomizdat, Moscow, 1989; Gordon & Breach, Reading, MA, 1992).Google Scholar
  61. 61.
    R. Mallier and S. A. Maslowe, Phys. Fluids 5, 1074 (1993).MathSciNetADSzbMATHCrossRefGoogle Scholar
  62. 62.
    G. D. Aburjania, Kh. Z. Chargazia, L. M. Zeleny, and G. Zimbardo, Nonlin. Processes Geophys. 16, 11 (2009).ADSCrossRefGoogle Scholar
  63. 63.
    J. R. Holton, The Dynamic Meteorology of the Stratosphere and Mesosphere (American Meteorological Society, Boston, 1975; Gigrometeoizdat, Leningrad, 1979).Google Scholar
  64. 64.
    G. D. Aburjania and G. Z. Machabeli, J. Geophys. Res. A 103, 9441 (1998).ADSCrossRefGoogle Scholar
  65. 65.
    G. D. Aburjania, Fiz. Plazmy 22, 954 (1996) [Plasma Phys. Rep. 22, 864 (1996)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • G. D. Aburjania
    • 1
  • Kh. Z. Chargazia
    • 2
  1. 1.I. Vekua Institute of Applied MathematicsTbilisi State UniversityTbilisiGeorgia
  2. 2.Nodia Institute of GeophysicsTbilisiGeorgia

Personalised recommendations