Plasma Physics Reports

, Volume 36, Issue 6, pp 455–461 | Cite as

Correction of the axial asymmetry of the poloidal magnetic field in the Globus-M spherical tokamak

  • Yu. V. Petrov
  • M. I. Patrov
  • V. I. Varfolomeev
  • V. K. Gusev
  • E. A. Lamzin
  • N. V. Sakharov
  • S. E. Sychevskii
Tokamaks

Abstract

The toroidal inhomogeneity of the poloidal magnetic field—the so-called error fields that arise due to imperfections in manufacturing and assembling of the electromagnetic system-was measured in the Globus-M spherical tokamak. A substantial inhomogeneity corresponding to the n = 1 mode, which gave rise to a locked mode and led to discharge disruption, was revealed. After compensation of this inhomogeneity with the help of special correction coils, the discharge duration increased and the global plasma parameters improved substantially. A technique for determining and compensating the n = 1 mode inhomogeneity is described, the measured dependences of the penetration threshold of the m = 2/n = 1 mode on the plasma parameters are given, and results of experiments in which record parameters for the Globus-M tokamak were achieved after correction of the poloidal magnetic field are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ITER Physics Basis, Nucl. Fusion 39, 2286 (1999).Google Scholar
  2. 2.
    D. F. Howell, T. C. Hender, and G. Cunningham, Nucl. Fusion 47, 1336 (2007).CrossRefADSGoogle Scholar
  3. 3.
    J. E. Menard, M. G. Bell, R. E. Bell, et al., Nucl. Fusion 47, 645 (2007).CrossRefADSGoogle Scholar
  4. 4.
    M. Okabayashi, J. Bialek, A. Bondeson, et al., Nucl. Fusion 45, 1715 (2005).CrossRefADSGoogle Scholar
  5. 5.
    H. R. Koslowski, Y. Liang, A. Kramer-Flecken, et al., Nucl. Fusion 43 (2003).Google Scholar
  6. 6.
    G. M. Fishpool and P. S. Haynes, Nucl. Fusion 34, 109 (1994).CrossRefADSGoogle Scholar
  7. 7.
    M. I. Patrov, S. E. Bender, V. K. Gusev, et al., Fiz. Plazmy 33, 99 (2007) [Plasma Phys. Rep. 33, 81 (2007)].Google Scholar
  8. 8.
    J. T. Morris, P. G. Carolan, T. C. Hender, et al., Phys. Fluids 4, 413 (1992).CrossRefGoogle Scholar
  9. 9.
    V. Amoskov, A. Belov, V. Belyakov, et al., Plasma Dev. Operat. 12, 285 (2004).CrossRefGoogle Scholar
  10. 10.
    V. D. Pustovitov, Fiz. Plazmy 24, 530 (1998) [Plasma Phys. Rep. 24, 486 (1998)].Google Scholar
  11. 11.
    L. L. Lao, H. S. John, R. D. Stambaugh, et al., Nucl. Fusion 25, 1611 (1985).Google Scholar
  12. 12.
    V. K. Gusev, S. E. Bender, A. V. Dech, et al., Zh. Tekh. Fiz. 76(8), 25 (2006) [Tech. Phys. 51, 987 (2006)].Google Scholar
  13. 13.
    Progress in the ITER Physics Basis, Nucl. Fusion 47, S128 (2007).Google Scholar
  14. 14.
    R. J. La Haye, A. W. Hyatt, and J. T. Scoville, Nucl. Fusion 32, 2119 (1992).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • Yu. V. Petrov
    • 1
  • M. I. Patrov
    • 1
  • V. I. Varfolomeev
    • 1
  • V. K. Gusev
    • 1
  • E. A. Lamzin
    • 2
  • N. V. Sakharov
    • 1
  • S. E. Sychevskii
    • 2
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.D.V. Efremov Scientific Research Institute of Electrophysical ApparatusSt. PetersburgRussia

Personalised recommendations