Advertisement

Plasma Physics Reports

, Volume 36, Issue 4, pp 281–317 | Cite as

Intense fusion neutron sources

  • B. V. Kuteev
  • P. R. Goncharov
  • V. Yu. Sergeev
  • V. I. Khripunov
Plasma Radiations

Abstract

The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015–1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10–20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

Keywords

Tritium Plasma Physic Report Neutron Source Neutron Yield Active Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Taylor, M. Dunne, S. Bennington, et al., Science 315, 1092s (2007s).CrossRefADSGoogle Scholar
  2. 2.
    Non-Electric Applications of Fusion, Final Report to Fusion Energy Sciences Advisory Committee (U. S. Department of Energy, Washington, DC 2003); http://www.ofes.fusion.doe.gov/More_HTML/FESAC/FESACFinalNon-Elec.pdf
  3. 3.
    I. S. K. Gardner, in Proceedings of the 6th European Particle Accelerator Conference, Stockholm, 1998, p. 98; http://accelconf.web.cern.ch/AccelConf/e98/PAPERS/TUX03B.pdf
  4. 4.
    Yu. M. Shirokov and N. P. Yudin, Nuclear Physics (Nauka, Moscow, 1980) [in Russian].Google Scholar
  5. 5.
    K.-H. Schmidt, A. Kelić, S. Lukić, et al., Phys. Rev. ST Accel. Beams 10, 014 701 (2007).CrossRefGoogle Scholar
  6. 6.
    G. Ehlers and F. Klose, in Handbook of Advanced Magnetic Materials, Vol. 2: Characterization and Simulation, Ed. by Y. Liu, D. J. Sellmyer, and D. Shindo (Springer, New York, 2006), p. 66.Google Scholar
  7. 7.
    J. H. Campbell, D. L. Selby, R. M. Harrington, and P. B. Thompson, Report No. ORNL-6696 (Oak Ridge National Laboratory, Oak Ridge, TN, 1992).Google Scholar
  8. 8.
    B. Appleton and C. West, Oak Ridge Nat. Lab. Rev. 27(1) (1994); http://www.ornl.gov/info/ornlreview/rev27-12/text/ansmain.html
  9. 9.
    R. L. Kustom, in Proceedings of the XX International Linac Conference, Monterey, CA, 2000, p. 321; http://accelconf.web.cern.ch/accelconf/l00/papers/TU101.pdf
  10. 10.
    Development Opportunities for Small and Medium Scale Accelerator Driven Neutron Sources, IAEA TECDOC Series No. 1439 (IAEA, Vienna, 2005).Google Scholar
  11. 11.
    Y.-K. M. Peng, C. A. Neumeyer, P. J. Fogarty, et al., in Proceedings of the 20th IAEA Fusion Energy Conference, Vilamoura, 2004, Paper FT/3-1Rb.Google Scholar
  12. 12.
    H. R. Wilson, G. M. Voss, R. J. Akers, et al., in Proceedings of the 20th IAEA Fusion Energy Conference, Vilamoura, 2004, Paper FT/3-1Ra.Google Scholar
  13. 13.
    D. Steiner, E. Cheng, R. Miller, et al., The ARIES Fusion Neutron Source Study, UCSD-ENG-0083 (University of California, San Diego, CA, 2000); http://aries.ucsd.edu/LIB/REPORT/ARIES-MISC/FNS-final.pdf Google Scholar
  14. 14.
    M. A. Abdou, A. Ying, N. Morley, et al., 18th Topical Meeting on the Technology of Fusion Energy, San Francisco, 2008, Plenary Talk; http://www.fusion.ucla.edu/abdou/abdou%20presentations/2008/TOFE_Plenary_Talk_Sept2008.ppt
  15. 15.
    Accelerator-driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles. A Comparative Study (OECD Nuclear Energy Agency, Issy-les-Moulineaux, 2002); http://www.nea.fr/html/ndd/reports/2002/nea3109-ads.pdf
  16. 16.
    A. Buccafurni and P. A. Landeyro, Energ. Nucl. 2, 34 (1994); http://www.nea.fr/html/trw/docs/hybrid/hybrid.pdf Google Scholar
  17. 17.
    K. Kawase and M. Inoue, in Proceedings of the 1st Asian Particle Accelerator Conference, Tsukuba, 1998, p. 104; http://accelconf.web.cern.ch/AccelConf/a98/APAC98/4d012.pdf
  18. 18.
    Proceedings of the 21st IAEA Fusion Energy Conference, Chengdu, 2006; http://www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.htm
  19. 19.
    Proceedings of the 22nd IAEA Fusion Energy Conference, Geneva, 2008; http://www-pub.iaea.org/MTCD/Meetings/fec2008pp.asp
  20. 20.
    XXXVI International Zvenigorod Conference on Plasma Physics and Controlled Fusion, Zvenigorod, 2009, Abstracts of Papers; http://www.fpl.gpi.ru/Zvenigorod/XXXVI/Zven_XXXVI_e.html
  21. 21.
    Third Fusion-Fission Hybrids Workshop, University of Maryland, College Park, MD, 2009.Google Scholar
  22. 22.
    B. V. Kuteev, V. N. Dokuka, A. A. Golikov, et al., XXXVI International Zvenigorod Conference on Plasma Physics and Controlled Fusion, Zvenigorod, 2009, Abstracts of Papers, p. 107.Google Scholar
  23. 23.
    B. V. Kuteev, A. A. Borisov, A. A. Golikov, et al., in Third Fusion-Fission Hybrids Workshop, University of Maryland, College Park, MD, 2009; http://www.lehigh.edu/~inened/documents/Kuteev.pdf
  24. 24.
    B. V. Kuteev, A. A. Borisov, A. A. Golikov, et al., Submitted to IEEE Trans. Plasma Sci.Google Scholar
  25. 25.
    K. Ikeda, Nucl. Fusion 47, S1 (2007).CrossRefGoogle Scholar
  26. 26.
    Yu. Ya. Stavissky, Usp. Fiz. Nauk 176, 1283 (2006) [Phys. Usp. 49, 1253 (2006)].CrossRefGoogle Scholar
  27. 27.
    G. A. Ivanov, N. P. Voloshin, A. S. Ganeev, et al., Explosion Deuterium Energetics (RFYaTs VNIITF, Snezhinsk, 1997) [in Russian].Google Scholar
  28. 28.
    J. M. Carpenter, Neutron Production, Moderation, and Characterization (Argonne National Laboratory, Argonne, IL, 2004); http://www.neutron.anl.gov/reference.html Google Scholar
  29. 29.
    T. J. Dolan, Fusion Research (Pergamon, New York, 1982).Google Scholar
  30. 30.
    R. G. Vasil’kov, V. I. Gol’danskii, and V. V. Orlov, Usp. Fiz. Nauk 139, 435 (1983) [Sov. Phys. Usp. 26, 228 (1983)].Google Scholar
  31. 31.
    G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering (Dover, London, 1997).Google Scholar
  32. 32.
    J. Wesson, Tokamaks (Oxford University Press, Oxford, 2003).Google Scholar
  33. 33.
    S. S. Gershtein, Yu. V. Petrov, and L. I. Ponomarev, Usp. Fiz. Nauk 160, 3 (1990) [Sov. Phys. Usp. 33, 1 (1990)].Google Scholar
  34. 34.
    A. I. Akhiezer and I. Ya. Pomeranchuk, Problems in the Nuclear Theory (GITTL, Moscow, 1950) [in Russian].Google Scholar
  35. 35.
    R. Pynn, Neutron Production. Lecture Notes (Indiana University, Bloomington, IN, 2006); www.physics.indiana.edu/~p537/notes/20060927_Pynn.pdf Google Scholar
  36. 36.
    G. R. Keepin, Physics of Nuclear Kinetics (Addison-Wesley, New York, 1965; Atomizdat, Moscow, 1967).Google Scholar
  37. 37.
    D. D. Iwanenko, Nature 129, 798 (1932).CrossRefADSGoogle Scholar
  38. 38.
    V. Weisskopf, Phys. Rev. 52, 295 (1937).zbMATHCrossRefADSGoogle Scholar
  39. 39.
    A. Boudard, J. Cugnon, S. Leray, and C. Volant, Phys. Rev. C 66, 044 615 (2002).CrossRefGoogle Scholar
  40. 40.
    K. F. Schoenberg and P. W. Lisowski, Los Alamos Sci., No. 30, 2 (2006).Google Scholar
  41. 41.
    K. Woloshun, Materials Test Station: A Summary (Los Alamos National Laboratory, Los Alamos, NM, 2004); http://www.iac.isu.edu/docs/workshops/beller/ADSS2004/2004%20Presentations/Woloshun—LANL%20MTS-1.pdf Google Scholar
  42. 42.
    S. Yu. Luk’yanov and N. G. Koval’skii, Hot Plasma and Controlled Nuclear Fusion (Nauka, MIFI, 1997) [in Russian].Google Scholar
  43. 43.
    H.-S. Bosch and G. M. Hale, Nucl. Fusion 32, 611 (1992).CrossRefADSGoogle Scholar
  44. 44.
    F. C. Frank, Nature 160, 525 (1947).CrossRefADSGoogle Scholar
  45. 45.
    L. W. Alvarez, H. Bradner, F. S. Crawford, Jr., et al., Phys. Rev. 105, 1127 (1957).CrossRefADSGoogle Scholar
  46. 46.
    K. Ishida, K. Nagamine, T. Matsuzaki, and N. Kawamura, J. Phys. G 29, 2043 (2003).CrossRefADSGoogle Scholar
  47. 47.
    L. N. Bogdanova, V. R. Bom, A. M. Demin, et al., Zh. Éksp. Teor. Fiz. 135, 242 (2009) [JETP 108, 226 (2009)].Google Scholar
  48. 48.
    C. Amsler, M. Doser, M. Antonelli, et al., Phys. Lett. B 667, 1 (2008).CrossRefADSGoogle Scholar
  49. 49.
    S. E. Jones, A. N. Anderson, A. J. Caffrey, et al., Phys. Rev. Lett. 56, 588 (1986).CrossRefADSGoogle Scholar
  50. 50.
    P. Garin and M. Sugimoto, in Proceedings of the 22nd IAEA Fusion Energy Conference, Geneva, 2008, Paper FT/1-2; http://www-pub.iaea.org/MTCD/Meetings/FEC2008/ft_1–2.pdf
  51. 51.
    U. von Moellendorf, F. Maekawa, H. Giese, and H. Feuerstein, Report No. FZKA 6764 (Forschung-szentrum Karlsruhe, Karlsruhe, 2002).Google Scholar
  52. 52.
    N. Nakao, Y. Uwamino, T. Nakamura, et al., Nucl. Instr. Meth. Phys. Res. A 420, 218 (1999).CrossRefADSGoogle Scholar
  53. 53.
    M. Abdou, Solid Breeder Blanket Concepts (Institute for Plasma Research, Gandhinagar, 2007); http://www.fusion.ucla.edu/abdou/abdou%20presentations/2007/India/Lecture2-SolidBreederBlankets-1-3-07.pdf Google Scholar
  54. 54.
    M. Drosg and D. M. Drake, Nucl. Instr. Meth. Phys. Res. B 73, 387 (1993).CrossRefADSGoogle Scholar
  55. 55.
    R. C. Haight, M. B. Chadwick, and D. J. Vieira, Los Alamos Sci., No. 30, 53 (2006).Google Scholar
  56. 56.
    K. Nishimura, H. Yamanishi, K. Hayashi, and A. Komori, Plasma Fusion Res. 3, 1024 (2008).CrossRefADSGoogle Scholar
  57. 57.
    B. V. Kuteev and V. I. Khripunov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 1, 3 (2009).Google Scholar
  58. 58.
    B. B. Cipiti, Report No. SAND2006-3522 (Sandia National Laboratories, Albuquerque, NM, 2006); http://prod.sandia.gov/techlib/access-control.cgi/2006/063522.pdf Google Scholar
  59. 59.
    LIFE: Clean Energy from Nuclear Waste (LLNL-WEB-408499) (Lawrence Livermore National Laboratory, Livermore, CA, 2009); https://lasers.llnl.gov/about/missions/energy_for_the_future/life/
  60. 60.
    K. Nagamine, T. Matsuzaki, K. Ishida, et al., in Proceedings of the 18th Fusion Energy Conference, Sorrento, 2000, Paper ICP/15; http://www.iaea.org/programmes/ripc/physics/fec2000/pdf/icp_15.pdf
  61. 61.
    Neutron Applications in Earth, Energy and Environmental Sciences, Ed. by L. Liang, R. Rinaldi, and H. Schober (Springer, New York, 2009).Google Scholar
  62. 62.
    M. Peng, J. Gehin, L. Ott, et al., in Third Fusion-Fission Hybrids Workshop, University of Maryland, College Park, MD, 2009; http://www.lehigh.edu/~inened/documents/Peng.pdf
  63. 63.
    L. J. Perkins, B. G. Logan, M. D. Rosen, et al., Nucl. Fusion 40, 1 (2000).CrossRefADSGoogle Scholar
  64. 64.
  65. 65.
    V. Mikerov, Yu. Barmakov, E. Bogolubov, and V. Ryzhkov, International Workshop on Fast Neutron Detectors, University of Cape Town, Cape Town, 2006); http://pos.sissa.it/archive/conferences/025/023/FNDA2006-023.pdf
  66. 66.
  67. 67.
  68. 68.
  69. 69.
    S. Willms, ITER Test Blanket Module Meeting, University of California, Los Angeles, CA, 2004); http://www.fusion.ucla.edu/ITER-TBM/ITER-TBM2/Tritium%20Supply%20Considerations.ppt
  70. 70.
    V. M. Samsonov, Scientific Session of the Branch of Physical Sciences, Russian Academy of Sciences, December 15, 2008; http://www.pnpi.spb.ru/win/doc/ofn-08-samsonov.pdf
  71. 71.
    T. A. Gabriel, J. N. Barnes, L. A. Charlton, et al., in Proceedings of the Accelerator Production of Tritium Symposium, University of South Carolina, Columbia, SC, 1996; http://www.ornl.gov/~webworks/cppr/y2001/pres/111429.pdf
  72. 72.
    Conceptual Fusion-Fission Energy Systems, ERDA-4 UC-20 (Proceedings of the Fusion-Fission Energy Systems Review Meeting, Germantown, Maryland, 1974), Ed. by S. L. Bogart (ERDA, Washington DC, 1974), p. 221; http://ralphmoir.com/fusFisERDA4.pdfGoogle Scholar
  73. 74.
    Working Material TWG-FR/122/IAEA-622-I3-TR-26091: IAEA Workshop on Technology and Applications of Accelerator Driven Systems, Trieste, Italy, 2003; http://www.iaea.or.at/inisnkm/nkm/aws/fnss/fulltext/twgfr122.pdf
  74. 75.
    É. A. Azizov, G. G. Gladush, V. N. Dokuka, and R. R. Khaĭrutdinov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 3, 3 (2007).Google Scholar
  75. 76.
  76. 77.
    R. J. Hawryluk, S. Batha, W. Blanchard, et al., Phys. Plasmas 5, 1577 (1998).CrossRefADSGoogle Scholar
  77. 78.
    J. Jacquinot, V. P. Bhatnagar, J. G. Cordey, et al., Nucl. Fusion 39, 235 (1999).CrossRefADSGoogle Scholar
  78. 79.
    C. Gormezano, Plasma Phys. Controlled Fusion 41, B367 (1999).CrossRefGoogle Scholar
  79. 80.
    M. Matsukawa, S. Matsuda, M. Kikuchi, et al., in Proceedings of the 21st IAEA Fusion Energy Conference, Chengdu, 2006, Paper FT/P7-5; http://www-pub.iaea.org/MTCD/Meetings/FEC2006/ft_p7-5.pdf
  80. 81.
    K. Ikeda, in 18th International Toki Conference, Toki, 2008; http://www.nifs.ac.jp/itc/itc18/upload/presentation_upload/PL-01_Ikeda.pdf
  81. 82.
    F. Najmabadi, Fusion Summer Study, Fusion Development Path, Snowmass, CO, 2002; http://aries.ucsd.edu/E4/Interim_Report.pdf
  82. 83.
    M. S. Tillack, D. Steiner, L. M. Waganer, et al., Interim Report No. UCSD-CER-08-01 (ARIES Technical Working Groups, University of California, San Diego, CA, 2008).Google Scholar
  83. 84.
    Fusion Energy Moving Forward: Spin off Benefits from Fusion R&D, European Commission, 2003; http://ec.europa.eu/research/energy/pdf/spin_off_en.pdf
  84. 85.
    I. Cook, D. Ward, and N. Taylor, International Energy Agency Workshop on Socio-Economics Aspects of Fusion Power, Culham, 2005); http://fusion.org.uk/socioecon/Cook2.pdf
  85. 86.
    E. T. Cheng, Y.-K. M. Peng, R. Cerbone, et al., Fusion Eng. and Design 38, 219 (1998).CrossRefGoogle Scholar
  86. 87.
    M. A. Abdou, M. Peng, S. Berk, et al., in Proceedings of the 15th IAEA Conference on Plasma Physics and Controlled Nuclear Fusion, Seville, 1994, Paper IAEA-CN-60/F-II-6; http://www-ferp.ucsd.edu/LIB/REPORT/PEOPLE/MST/A49.pdf.
  87. 88.
    D. L. Jassby, in Conceptual Fusion-Fission Energy Systems, ERDA-4 UC-20 (Proceedings of the Fusion-Fission Energy Systems Review Meeting, Germantown, Maryland, 1974), Ed. by S. L. Bogart (ERDA, Washington DC, 1974), p. 221; http://ralphmoir.com/fusFisERDA4.pdf Google Scholar
  88. 89.
    D. L. Jassby, Nucl. Fusion 15, 453 (1975).ADSGoogle Scholar
  89. 90.
    D. L. Jassby, Nucl. Fusion 17, 309 (1977).ADSGoogle Scholar
  90. 91.
    M. Gryaznevich, in Third Fusion-Fission Hybrids Workshop, University of Maryland, College Park, MD, 2009; http://www.lehigh.edu/~inened/documents/Gryaznevich.pdf
  91. 92.
    J. H. Harris and D. A. Spong, in Third Fusion-Fission Hybrids Workshop, University of Maryland, College Park, MD, 2009; http://www.lehigh.edu/~inened/documents/Harris_Spong.pdf
  92. 93.
    T. J. Dolan, K. Yamazaki, and A. Sagara, in 16th Topical Meeting on the Technology of Fusion Energy, Madison, WI, 2004; http://fti.neep.wisc.edu/tofeprogram/oral/O-I-4.6.pdf
  93. 94.
    A. Komori, H. Yamada, O. Kaneko, et al., Plasma Phys. Controlled Fusion 42, 1165 (2000).CrossRefADSGoogle Scholar
  94. 95.
    H. Yamada, S. Imagawa, Y. Takeiri, et al., Fusion Eng. Design 84, 186 (2009).CrossRefGoogle Scholar
  95. 96.
    V. P. Pastukhov and H. L. Berk, Nucl. Fusion 33, 1471 (1993).CrossRefADSGoogle Scholar
  96. 97.
    S. Taczanowski, in Working Material TWG-FR/132/IAEA-RC-870.3: Third Research Coordination Meeting (RCM) of the Coordinated Research Project (CRP) on Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste, Chennai, 2007, p. 815; http://www.iaea.org/inisnkm/nkm/aws/fnss/fulltext/twgfr132.pdf
  97. 98.
    R. W. Moir and T. D. Rognlien, Fusion Sci. Technol. 52, 408 (2007).Google Scholar
  98. 99.
    D. D. Ryutov, Usp. Fiz. Nauk 154, 565 (1988) [Sov. Phys. Usp. 31, 300 (1988)].Google Scholar
  99. 100.
    A. A. Ivanov, in Third Fusion-Fission Hybrids Workshop, University of Maryland, College Park, MD, 2009; http://www.lehigh.edu/~inened/documents/Ivanov.pdf
  100. 101.
    E. P. Kruglyakov, A. V. Burdakov, and A. A. Ivanov, in Proceedings of the 22nd IAEA Fusion Energy Conference, Geneva, 2008, Paper IC/P4-9; http://www-pub.iaea.org/MTCD/Meetings/FEC2008/ic_p4–9.pdf
  101. 102.
    A. A. Ivanov, in Proceedings of the 22nd IAEA Fusion Energy Conference, Geneva, 2008, Paper EX/P5-43; http://www-pub.iaea.org/MTCD/Meetings/FEC2008/ex_p5–43.pdf
  102. 103.
    A. V. Anikeev, P. A. Bagryansky, A. A. Ivanov, et al., XXXVI International Zvenigorod Conference on Plasma Physics and Controlled Fusion, Zvenigorod, 2009, Abstracts of Papers, p. 39; http://www.fpl.gpi.ru/Zvenigorod/XXXVI/Mu/en/AQ-Anikeev_e.doc
  103. 104.
    P. A. Bagryansky, A. A. Ivanov, E. P. Kruglyakov, et al., Fusion Eng. Des. 70, 13 (2004).CrossRefGoogle Scholar
  104. 105.
    F. H. Coensgen, T. A. Casper, D. L. Correl, et al., in Proceedings of the International School of Plasma Physics “Piero Caldirola,” Varenna, 1991 (Editrice Compasitori, Bologna, 1991), p. 477.Google Scholar
  105. 106.
    T. Cho, H. Higaki, M. Hirata, et al., in Proceedings of the 21st IAEA Fusion Energy Conference, Chengdu, 2006, Paper EX/P7-14; http://www-naweb.iaea.org/napc/physics/FEC/FEC2006/papers/ex_p7-14.pdf
  106. 107.
    N. G. Basov, V. I. Subbotin, and L. P. Feoktistov, Vest. Ross. Akad. Nauk 63, 878 (1993).Google Scholar
  107. 108.
    K. Matzen, in Third Fusion-Fission Hybrids Workshop, University of Maryland, College Park, MD, 2009; http://www.lehigh.edu/~inened/documents/Matzen.pdf
  108. 109.
    S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanle, Phys. Rev. B 38, 2297 (1988).CrossRefADSGoogle Scholar
  109. 110.
    G. I. Marchuk, B. G. Dubovskii, V. V. Smelov, and Z. N. Milyutina, in Study of the Critical Parameters of Reactor Systems, Ed. by P. A. Gavrilov (Gosatomizdat, Moscow, 1960), p. 107 [in Russian].Google Scholar
  110. 111.
    W. Manheimer, J. Fusion Energy 23, 223 (2004).CrossRefGoogle Scholar
  111. 112.
    B. McNamara, 4th Claverton Energy Conference, Claverton Down in Bath, UK, 2008; http://www.clavertonenergy.com/?dl_id=49
  112. 113.
    S. Taczanowski, Post. Tech. Jadr. 41, 437 (1998).Google Scholar
  113. 114.
    D. Beller, in Proceedings of the 8th Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, Las Vegas, NV, 2004, p. 495; http://www.nea.fr/html/pt/docs/iem/lasvegas04/11_Session_V/S5_04.pdf
  114. 115.
    J. Blazquez, in Proceedings of the 6th Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, Madrid, 2000, p 823; http://www.nea.fr/html/pt/docs/iem/madrid00/Proceedings/Paper16.pdf
  115. 116.
    O. Köberl, G. Ritter, I. Slessarev, et al., in Proceedings of the 5th OECD/NEA Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, Mol, 1998; http://www.nea.fr/html/pt/docs/iem/mol98/session5/SVpaper3.pdf
  116. 117.
    M. Piera and J. M. Martinez-Val, in 13th International Conference on Emerging Nuclear Energy Systems, Istanbul, 2007; http://www.icenes2007.org/icenes-proceedings/manuscripts.pdf/Session%2010A/HYBRID.pdf
  117. 118.
    H. A. Bethe, Phys. Today 32, 44 (1979).CrossRefADSGoogle Scholar
  118. 119.
    E. I. Moses, J. Phys. Conf. Ser. 112, 012 003 (2008).CrossRefGoogle Scholar
  119. 120.
    H. Kiyavitskaya, C. Routkovskaia, I. Serafimovich, et al., in Technical Meeting on the Use of Low Enriched Uranium in Accelerator Driven Sub-Critical Assemblies, Vienna, 2005; http://www.iaea.org/OurWork/ST/NE/NEFW/documents/TMonUseofLEUonADS/PDFPresentations/Kiayvitskaya_Presentation.pdf
  120. 121.
  121. 122.
  122. 123.
    R. Sheffield, in Third Fusion-Fission Hybrids Workshop, University of Maryland, College Park, MD, 2009; http://www.lehigh.edu/~inened/documents/Shefield.pdf
  123. 124.
    M. Kotschenreuther, P. M. Valanju, S. M. Mahajan, and E. A. Schneider, Fusion Eng. Design 84, 83 (2009).CrossRefGoogle Scholar
  124. 125.
    M. Kotschenreuther, in Third Fusion-Fission Hybrids Workshop, University of Maryland, College Park, MD, 2009; http://www.lehigh.edu/~inened/documents/Kotschenreuther.pdf
  125. 126.
    Peng M., in Third Fusion-Fission Hybrids Workshop, University of Maryland, College Park, MD, 2009; http://www.lehigh.edu/~inened/documents/Peng.pdf
  126. 127.
    L. E. Zakharov, 127. Zakharov L.E., in Third Fusion-Fission Hybrids Workshop, University of Maryland, College Park, MD, 2009; http://www.lehigh.edu/~inened/documents/Zakharov.pdf
  127. 128.
    W. M. Stacey, J. Fusion Energy 28, 328 (2009).CrossRefGoogle Scholar
  128. 129.
    J. Li, J. Zhang, and X. Duan, 22nd IAEA Fusion Energy Conference, Geneva, 2008, Paper E/1-3; http://fire.pppl.gov/IAEA08_Geneva_li.ppt
  129. 130.
    L. Giancarli, V. Chuyanov, M. Abdou, et al., J. Nucl. Mater. 367-370, 1271 (2007).CrossRefADSGoogle Scholar
  130. 131.
    Fusion Technology (2006 Annual Report), Ed. by Th. Salmon and F. le Vagueres (Association EURA-TOM-CEA, Saint-Paul-Lez-Durance, 2007), pp. 145–257; http://www-fusion-magnetique.cea.fr/actualites/ra06/eur-cea-2006-full-report.pdfGoogle Scholar
  131. 132.

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • B. V. Kuteev
    • 1
  • P. R. Goncharov
    • 2
  • V. Yu. Sergeev
    • 2
  • V. I. Khripunov
    • 1
  1. 1.Russian Research Centre Kurchatov InstituteMoscowRussia
  2. 2.St. Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations