Plasma Physics Reports

, 35:933 | Cite as

Conversion of methane in a coaxial microwave torch

  • S. I. Gritsinin
  • P. A. Gushchin
  • A. M. Davydov
  • E. V. Ivanov
  • I. A. Kossyi
  • M. A. Misakyan
Plasma Diagnostics


A microwave coaxial plasmatron (microwave torch) is used as a plasmachemical converter of methane into hydrogen and hydrocarbons. The measured energy cost of methane decomposition is close to its minimum theoretical value. Such a low energy cost is unsurpassed for reactors operating at atmospheric pressure. A model of the plasmachemical converter is constructed. The results of calculations in the frame-work of this model agree well with experimental data.


Plasma Physic Report Plasma Torch Methane Conversion Argon Flow Rate Methane Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Moisan, G. Sauve, Z. Zakrzewski, and J. Hubert, Plasma Sources Sci. Technol. 3, 584 (1994).CrossRefADSGoogle Scholar
  2. 2.
    M. Moisan, Z. Zakrzewski, and J. C. Rostaining, Plasma Sources Sci. Technol. 10, 387 (2001).CrossRefADSGoogle Scholar
  3. 3.
    M. Jasinski, J. Mizeraczyk, Z. Zakrzewski, et al., Phys. D 35, 2274 (2002).CrossRefADSGoogle Scholar
  4. 4.
    K. M. Green, M. C. Borras, P. P. Woskow, et al., IEEE Trans. Plasma Sci. 29, 399 (2001).CrossRefADSGoogle Scholar
  5. 5.
    H. S. Uhm, Y. C. Hong, and D. H. Shin, Plasma Sources Sci. Technol. 15, 26 (2006).CrossRefADSGoogle Scholar
  6. 6.
    M. Jasinski, Z. Zakrzewski, and J. Mizeraczyk, in Proceedings of the 16th Symposium on Application of Plasma Processes, Podbanske, 2007, P 165.Google Scholar
  7. 7.
    S. I. Gritsinin, V. Yu. Knyazev, I. A. Kossyi, et al., Fiz. Plazmy 30, 283 (2004) [Plasma Phys. Rep. 30, 255 (2004)].Google Scholar
  8. 8.
    E. M. Barkhudarov, S. I. Gritsinin, G. V. Dreiden, et al., Fiz. Plazmy 30, 575 (2004) [Plasma Phys. Rep. 30, 531 (2004)].Google Scholar
  9. 9.
    S. I. Gritsinin, I. A. Kossyi, E. B. Kulumbaev, and V. M. Lelevkin, Fiz. Plazmy 32, 946 (2006) [Plasma Phys. Rep. 32, 872 (2006)].Google Scholar
  10. 10.
    S. I. Gritsinin, V. Yu. Knyazev, I. A. Kossyi, and N. A. Popov, Fiz. Plazmy 32, 565 (2006) [Plasma Phys. Rep. 32, 520 (2006)].Google Scholar
  11. 11.
    T. Kovacs and R. T. Deam, J. Phys. D 39, 2391 (2006).CrossRefADSGoogle Scholar
  12. 12.
    M. Heintze, M. Magureanu, and M. Kettlitz, J. Appl. Phys. 92, 7022 (2002).CrossRefADSGoogle Scholar
  13. 13.
    M. Jasinski, M. Dors, and J. Mizeraczyk, in Proceedings of the 28th international Conference on Physics of Ionized Gases, Prague, 2007, p. 2121.Google Scholar
  14. 14.
    A. I. Babaritskii, S. A. Demkin, V. K. Zhivotov, et al., in Plasmochemistry 91, Ed. by L. S. Polak (Inst. Neftekhimicheskogo Sinteza im. A.V. Topchieva, AN SSSR, Moscow, 1991), p. 286 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • S. I. Gritsinin
    • 1
  • P. A. Gushchin
    • 2
  • A. M. Davydov
    • 1
  • E. V. Ivanov
    • 2
  • I. A. Kossyi
    • 1
  • M. A. Misakyan
    • 1
  1. 1.Prokhorov Institute of General PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Gubkin State University of Oil and GasMoscowRussia

Personalised recommendations