Plasma Physics Reports

, 35:867 | Cite as

Simulation of the ignition of a methane-air mixture by a high-voltage nanosecond discharge

  • N. L. Aleksandrov
  • S. V. Kindysheva
  • E. N. Kukaev
  • S. M. Starikovskaya
  • A. Yu. Starikovskii
Low-Temperature Plasma

Abstract

The ignition dynamics of a CH4: O2: N2: Ar = 1: 4: 15: 80 mixture by a high-voltage nanosecond discharge is simulated numerically with allowance for experimental data on the dynamics of the discharge current and discharge electric field. The calculated induction time agrees well with experimental data. It is shown that active particles produced in the discharge at a relatively low deposited energy can reduce the induction time by two orders of magnitude. Comparison of simulation results for mixtures with and without nitrogen shows that addition of nitrogen to the mixture leads to a decrease in the average electron energy in the discharge and gives rise to new mechanisms for accumulation of oxygen atoms due to the excitation of nitrogen electronic states and their subsequent quenching in collisions with oxygen molecules. Acceleration of the discharge-initiated ignition is caused by a faster initiation of chain reactions due to the production of active particles, first of all oxygen atoms, in the discharge.

PACS numbers

52.80.-s 82.33.Xj 

References

  1. 1.
    S. M. Starikovskaia, J. Phys. D 39, R265 (2006).CrossRefADSGoogle Scholar
  2. 2.
    S. A. Bozhenkov, S. M. Starikovskaia, and A. Yu. Starikovskii, Combust. Flame 133, 133 (2003).CrossRefGoogle Scholar
  3. 3.
    N. Chintala, A. Bao, G. Lou, and I. V. Adamovich, Combust. Flame 144, 744 (2006).CrossRefGoogle Scholar
  4. 4.
    S. V. Pancheshnyi, D. A. Lacoste, A. Bourdon, and C. Laux, IEEE Trans. Plasma Sci. 34, 2478 (2006).CrossRefADSGoogle Scholar
  5. 5.
    A. Yu. Starikovskii, Fiz. Goreniya Vzryva, No. 6, 12 (2003).Google Scholar
  6. 6.
    I. V. Kochetov, A. P. Napartovich, and S. B. Leonov, Khim. Vys. Energ. 40, 126 (2006).Google Scholar
  7. 7.
    S. B. Leonov, D. A. Yarantsev, A. P. Napartovich, and I. V. Kochetov, IEEE Trans. Plasma Sci. 34, 2514 (2006).CrossRefADSGoogle Scholar
  8. 8.
    S. B. Leonov, D. A. Yarantsev, A. P. Napartovich, and I. V. Kochetov, Plasma Sci. Technol. 9, 760 (2007).CrossRefADSGoogle Scholar
  9. 9.
    G. V. Naidis, J. Phys. D 40, 4525 (2007).CrossRefADSGoogle Scholar
  10. 10.
    I. N. Kosarev, N. L. Aleksandrov, S. V. Kindysheva, et al., J. Phys. D 41, 032 002 (2008).CrossRefGoogle Scholar
  11. 11.
    I. N. Kosarev, N. L. Aleksandrov, S. V. Kindysheva, et al., Combust. Flame 154, 569 (2008).CrossRefGoogle Scholar
  12. 12.
    I. N. Kosarev, N. L. Aleksandrov, S. V. Kindysheva, et al., Combust. Flame 156, 221 (2009).CrossRefGoogle Scholar
  13. 13.
    I. V. Adamovich, I. Choi, N. Jiang, et al., Plasma Sources Sci. Technol. 18, 034018 (2009).CrossRefADSGoogle Scholar
  14. 14.
    S. Williams, S. Popovic, L. Vuskovic, et al., in Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2004, Paper AIAA-2004-1012.Google Scholar
  15. 15.
    A. M. Starik and N. S. Titova, Zh. Tekh. Fiz. 74(9), 15 (2004) [Tech. Phys. 49, 1116 (2004)].Google Scholar
  16. 16.
    S. M. Starikovskaya, N. L. Aleksandrov, I. N. Kosarev, et al., Khim. Vys. Énerg. 43, 259 (2009).Google Scholar
  17. 17.
    S. M. Starikovskaia, E. N. Kukaev, A. Yu. Kuksin, et al., Combust. Flame 139, 177 (2004).CrossRefGoogle Scholar
  18. 18.
    B. Eliasson and U. Kogelschatz, Report No. KLR-86-11C (Brown Boveri Forschungszentrum, Baden, 1986).Google Scholar
  19. 19.
    O. V. Braginskiy, A. N. Vasilieva, K. S. Klopovskiy, et al., J. Phys. D 38, 3609 (2005).CrossRefADSGoogle Scholar
  20. 20.
    A. A. Ionin, I. V. Kochetov, A. P. Napartovich, and N. N. Yuryshev, J. Phys. D 40, R25 (2007).CrossRefADSGoogle Scholar
  21. 21.
    N. A. Popov, Fiz. Plazmy 27, 940 (2001) [Plasma Phys. Rep. 27, 886 (2001)].Google Scholar
  22. 22.
    J. M. Rodrigues, A. Agneray, X. Jaffrezic, et al., Plasma Sources Sci. Technol. 16, 161 (2007).CrossRefADSGoogle Scholar
  23. 23.
    N. L. Aleksandrov, S. V. Kindysheva, I. N. Kosarev, and A. Yu. Starikovskii, J. Phys. D 41, 215 207 (2008).CrossRefGoogle Scholar
  24. 24.
    J. L. Delcroix, C. M. Ferreira, and A. Ricard, in Principles of Laser Plasmas, Ed. by G. Bekefi (Wiley, New York, 1976; Énergoizdat, Moscow, 1982).Google Scholar
  25. 25.
    J. E. Velazco, J. H. Kolts, and D. W. Setser, J. Chem. Phys. 65, 3468 (1976).CrossRefADSGoogle Scholar
  26. 26.
    B. M. Smirnov, Excited Atoms (Énergoatomizdat, Moscow, 1982) [in Russian].Google Scholar
  27. 27.
    J. Balamuta, M. F. Golde, and A. M. Moyle, J. Chem. Phys. 82, 3169 (1985).CrossRefADSGoogle Scholar
  28. 28.
    M. P. Iannuzzi, J. B. Jeffries, and F. Kaufman, Chem. Phys. Lett. 87, 570 (1982).CrossRefADSGoogle Scholar
  29. 29.
    A. R. DeSousa, M. Touzeau, and M. Petitdidier, Chem. Phys. Lett. 121, 423 (1985).CrossRefADSGoogle Scholar
  30. 30.
    L. G. Piper, J. Chem. Phys. 88, 6911 (1988).CrossRefADSGoogle Scholar
  31. 31.
    L. G. Piper, J. Chem. Phys. 88, 231 (1988).CrossRefADSGoogle Scholar
  32. 32.
    D. I. Slovetskii, Mechanisms for Chemical Reactions in Nonequilibrium Plasmas (Nauka, Moscow, 1980) [in Russian].Google Scholar
  33. 33.
    L. G. Piper, G. E. Caledonia, and J. P. Kennealy, J. Chem. Phys. 75, 2847 (1981).CrossRefADSGoogle Scholar
  34. 34.
    L. G. Piper, J. Chem. Phys. 87, 1625 (1987).CrossRefADSGoogle Scholar
  35. 35.
    I. A. Kossyi, A. Yu. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992).CrossRefADSGoogle Scholar
  36. 36.
    J. T. Herron, J. Phys. Chem. Ref. Data 28, 1453 (1999).CrossRefADSGoogle Scholar
  37. 37.
    C. D. Pintassilgo, J. Loureiro, G. Cernogora, and M. Touzeau, Plasma Sources Sci. Technol. 8, 463 (1999).CrossRefADSGoogle Scholar
  38. 38.
    L. G. Piper, J. Chem. Phys. 97, 270 (1992).CrossRefADSGoogle Scholar
  39. 39.
    L. G. Piper, J. Chem. Phys. 87, 1625 (1987).CrossRefADSGoogle Scholar
  40. 40.
    M. J. McEwan and L. F. Phillips, Chemistry of the Atmosphere (Halsted, New York, 1975; Mir, Moscow, 1978).Google Scholar
  41. 41.
    J. B. A. Mitchell, Phys. Rep. 186, 215 (1990).CrossRefADSGoogle Scholar
  42. 42.
    D. R. Bates, Astrophys. J. 306, L45 (1986).CrossRefADSGoogle Scholar
  43. 43.
    W. J. Marinelli, W. J. Kessler, B. D. Green, and W. A. M. Blumberg, J. Chem. Phys. 90, 2167 (1989).CrossRefADSGoogle Scholar
  44. 44.
    I. P. Shkarofsky, T. W. Johnston, and M. P. Bachynskii, The Particle Kinetics of Plasmas (Addison-Wesley, Reading, 1966; Atomizdat, Moscow, 1969).Google Scholar
  45. 45.
    V. Hayashi, in Swarm Studies and Inelastic Electron-Molecule Collisions, Ed. by L. C. Pitchford, B. V. McCoy, A. Chutjian, and S. Tajmar (Springer-Verlag, New York, 1987), p. 167.Google Scholar
  46. 46.
    G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).CrossRefADSGoogle Scholar
  47. 47.
    K. Tachibana, Phys. Rev. A 34, 1007 (1989).CrossRefADSGoogle Scholar
  48. 48.
    P. C. Cosby, J. Chem. Phys. 98, 9544 (1993).CrossRefADSGoogle Scholar
  49. 49.
    A. A. Konnov, Proc. Combust. Inst. (Pittsburg) 28, 317 (2000).Google Scholar
  50. 50.
  51. 51.
    B. Eliasson and U. Kogelschatz, J. Chem. Phys. 83, 279 (1986).Google Scholar
  52. 52.
    N. L. Aleksandrov and A. M. Konchakov, Pis’ma Zh. Tekh. Fiz. 16(6), 4 (1990) [Tech. Phys. Lett. 16, 164 (1990)].Google Scholar
  53. 53.
    E. I. Mintoussov, S. V. Pancheshnyi, and A. Yu. Starikovskii, in Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2004, Paper AIAA-2004-1013.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • N. L. Aleksandrov
    • 1
  • S. V. Kindysheva
    • 1
  • E. N. Kukaev
    • 1
  • S. M. Starikovskaya
    • 2
  • A. Yu. Starikovskii
    • 3
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudny, Moscow oblastRussia
  2. 2.École PolytechniquePalaiseau CedexFrance
  3. 3.Drexel UniversityPhiladelphiaUSA

Personalised recommendations