Plasma Physics Reports

, Volume 35, Issue 6, pp 494–498 | Cite as

A nanoparticle in plasma

  • Yu. V. Martynenko
  • M. Yu. Nagel’
  • M. A. Orlov
Dusty Plasma


Charge and energy fluxes onto a nanoparticle under conditions typical of laboratory plasmas are investigated theoretically. Here, by a nanoparticle is meant a grain the size of which is much smaller than both the electron Larmor radius and Debye length and the thermionic emission from which is not limited by the space charge. Under conditions at which thermionic emission plays an important role, the electric potential and temperature T p of a nanoparticle are determined by solving a self-consistent set of equations describing the balance of energy and charge fluxes onto the nanoparticle. It is shown that, when the degree of plasma ionization exceeds a critical level, the potential of the nanoparticle and the energy flux onto it increase with increasing nanoparticle temperature, so that, starting from a certain temperature, the nanoparticle potential becomes positive. The critical degree of ionization starting from which the potential of a nanoparticle is always positive is determined as a function of the plasma density and electron temperature. The nanoparticle temperature T p corresponding to the equilibrium state of a positively charged nanoparticle is found as a function of the electron density for different electron temperatures.

PACS numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. E. Fortov, A. V. Ivlev, S. A. Khrapak, et al., Phys. Rep. 421, 1 (2005).CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    A. V. Kozyrev and A. N. Shishkov, Pis’ma Zh. Tekh. Fiz. 28, 33 (2002) [Tech. Phys. Lett. 28, 504 (2002)].Google Scholar
  3. 3.
    V. N. Tsytovich and J. Winter, Usp. Fiz. Nauk 168, 899 (1998) [Phys. Usp. 41, 815 (1998)].CrossRefGoogle Scholar
  4. 4.
    B. A. Vershok, A. B. Dormashev, I. Ya. Margulev, et al., Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 2, 31 (2006).Google Scholar
  5. 5.
    B. M. Smirnov, Usp. Fiz. Nauk 173, 609 (2003) [Phys. Usp. 46, 589 (2003)].CrossRefGoogle Scholar
  6. 6.
    L. I. Ognev, Pis’ma Zh. Tekh. Fiz. 33(22), 64 (2007) [Tech. Phys. Lett. 33, 972 (2007)].Google Scholar
  7. 7.
    S. I. Popel, A. A. Gisko, A. P. Golub’, et al., Fiz. Plazmy 27, 831 (2001) [Plasma Phys. Rep. 27, 785 (2001)].Google Scholar
  8. 8.
    A. I. Morozov and V. V. Savel’ev, Fiz. Plazmy 30, 330 (2004) [Plasma Phys. Rep. 30, 299 (2004)].Google Scholar
  9. 9.
    A. A. Samarian, O. S. Vaulina, A. P. Nefedov, et al., Phys. Rev. E 64, 056 407 (2001).Google Scholar
  10. 10.
    I. Yu. Veselova and V. A. Rozhanskii, Fiz. Plazmy 17, 1411 (1991) [Sov. J. Plasma Phys. 17, 817 (1991)].Google Scholar
  11. 11.
    B. V. Kuteev, V. Yu. Sergeev, and L. D. Tsendin, Fiz. Plazmy 10, 1172 (1984) [Plasma Phys. Rep. 10, 675 (1984)].Google Scholar
  12. 12.
    Yu. V. Martynenko and L. I. Ognev, Zh. Tekh. Fiz. 75(11), 130 (2005) [Tech. Phys. 50, 1522 (2005)].Google Scholar
  13. 13.
    V. L. Granovskii, Electrical Current in Gas (Gostekhteoretizdat, Moscow, 1952), Vol. 1 [in Russian].Google Scholar
  14. 14.
    L. D. Landau and E. M. Lifshitz, Mechanics (Nauka, Moscow, 1973; Pergamon, Oxford, 1976).Google Scholar
  15. 15.
    A. M. Ignatov, Fiz. Plazmy 28, 919 (2002) [Plasma Phys. Rep. 28, 847 (2002)].Google Scholar
  16. 16.
    G. H. P. M. Swinkels, H. Kersten, H. Deutsch, and G. M. W. Kroesen, J. Appl. Phys. 88, 1747 (2000).CrossRefADSGoogle Scholar
  17. 17.
    S. I. Anisimov, Ya. A. Imas, G. Romanov, and Yu. V. Khodyko, Action of High-Power Radiation on Metals (Nauka, Moscow, 1970) [in Russian].Google Scholar
  18. 18.
    D. J. E. Daugherty and D. B. Graves, J. Vac. Sci. Technol. A 11, 1126 (1993).CrossRefADSGoogle Scholar
  19. 19.
    V. I. Vishnyakov and G. S. Dragan, Phys. Rev. 74, 036404 (2006).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • Yu. V. Martynenko
    • 1
  • M. Yu. Nagel’
    • 1
  • M. A. Orlov
    • 1
  1. 1.Russian Research Centre Kurchatov InstituteMoscowRussia

Personalised recommendations