Plasma Physics Reports

, Volume 35, Issue 3, pp 191–199

Coagulation of dust grains in the plasma of an RF discharge in argon

  • Yu. A. Mankelevich
  • M. A. Olevanov
  • A. F. Pal’
  • T. V. Rakhimova
  • A. N. Ryabinkin
  • A. O. Serov
  • A. V. Filippov
Dusty Plasma

Abstract

Results are presented from experimental studies of coagulation of dust grains of different sizes injected into a low-temperature plasma of an RF discharge in argon. A theoretical model describing the formation of dust clusters in a low-temperature plasma is developed and applied to interpret the results of experiments on the coagulation of dust grains having large negative charges. The grain size at which coagulation under the given plasma conditions is possible is estimated using the developed theory. The theoretical results are compared with the experimental data.

PACS numbers

52.65.-y 52.27.Lw 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. P. Garrity, T. W. Peterson, and J. F. O’Hanlon, J. Vac. Sci. Technol. A14, 550 (1996).ADSGoogle Scholar
  2. 2.
    K. Spears, T. Robinson, and R. Roth, IEEE Trans. Plasma Sci. 14, 179 (1986).CrossRefADSGoogle Scholar
  3. 3.
    S. Hong, J. Berndt, and J. Winter, Plasma Sources Sci. Technol. 12, 46 (2003).CrossRefADSGoogle Scholar
  4. 4.
    Y. Watanabe, J. Phys. D 39, R329 (2006).CrossRefADSGoogle Scholar
  5. 5.
    M. Shiratani, H. Kawasaki, T. Fukuzawa, et al., J. Appl. Phys. 79, 104 (1996).CrossRefADSGoogle Scholar
  6. 6.
    M. A. Olevanov, Yu. A. Mankelevich, and T. V. Rakhimova, Zh. éksp. Teor. Fiz. 125, 324 (2004) [JETP 98, 287 (2004)].Google Scholar
  7. 7.
    Yu. A. Mankelevich, M. A. Olevanov, and T. V. Rakhimova, Plasma Sources Sci. Technol. 17, 015013 (2008).Google Scholar
  8. 8.
    M. A. Olevanov, Yu. A. Mankelevich, and T. V. Rakhimova, Zh. Tekh. Fiz. 73(10), 51 (2003) [Tech. Phys. 48, 1270 (2003)].Google Scholar
  9. 9.
    Yu. A. Mankelevich, M. A. Olevanov, and T. V. Rakhimova, Zh. éksp. Teor. Fiz. 121, 1288 (2002) [JETP 94, 1106 (2002)].Google Scholar
  10. 10.
    Y. Watanabe, M. Shiratani, H. Kawasaki, et al., J. Vac. Sci. Technol. A14, 540 (1996).ADSGoogle Scholar
  11. 11.
    B. Caussat and C. Vahlas, Chem. Vacuum Deposit. 13, 443 (2007).CrossRefGoogle Scholar
  12. 12.
    H. Kersten, P. Schmetz, G. W. M. Kroesen, and D. B. Sartwell, Surf. Coat. Technol. 108, 507 (1998).CrossRefGoogle Scholar
  13. 13.
    A. S. Ivanov, A. F. Pal, A. N. Ryabinkin, et al., in Plasma Processes and Polymers, Ed. by R. d’Agostino, P. Favia, C. Oehr, and M. Wertheimer (Wiley, Berlin, 2005), p. 455.CrossRefGoogle Scholar
  14. 14.
    I. A. Belov, A. S. Ivanov, D. A. Ivanov, et al., Zh. éksp. Teor. Fiz. 117, 105 (2000) [JETP 90, 93 (2000)].Google Scholar
  15. 15.
    I. A. Belov, A. S. Ivanov, A. F. Pal, et al., Phys. Lett. A 306, 52 (2002).CrossRefADSGoogle Scholar
  16. 16.
    A. S. Ivanov, A. G. Leonov, A. F. Pal’, et al., http://zhurnal.ape.relarn.ru/articles/2007/065.pdf
  17. 17.
    C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).Google Scholar
  18. 18.
    R. L. Xu, Particle Characterization: Light Scattering Methods (Kluwer, Dordrecht, 2000).Google Scholar
  19. 19.
    M. A. Olevanov, Yu. A. Mankelevich, and T. V. Rakhimova, Zh. Éksp. Teor. Fiz. 123, 503 (2003) [JETP 96, 444 (2003)].Google Scholar
  20. 20.
    J. Goree, Plasma Sources Sci. Technol. 3, 400 (1994).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • Yu. A. Mankelevich
    • 1
  • M. A. Olevanov
    • 1
  • A. F. Pal’
    • 1
  • T. V. Rakhimova
    • 1
  • A. N. Ryabinkin
    • 1
  • A. O. Serov
    • 1
  • A. V. Filippov
    • 2
  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  2. 2.Troitsk Institute for Innovation and Fusion ResearchTroitsk, Moscow oblastRussia

Personalised recommendations