Plasma Physics Reports

, Volume 34, Issue 7, pp 594–608

Numerical simulation of a surface barrier discharge in air

  • V. R. Solov’ev
  • A. M. Konchakov
  • V. M. Krivtsov
  • N. L. Aleksandrov
Low-Temperature Plasma

Abstract

The development of a surface barrier discharge in air at atmospheric pressure under the action of a constant voltage of different polarity is simulated numerically. When the polarity of the high-voltage electrode is negative, the discharge develops as an ionization wave that moves along the dielectric surface. When the polarity is positive, the discharge develops as a streamer that first moves above the dielectric surface and then comes into contact with and continues to develop along it. In the case of a high-voltage electrode of positive polarity, the discharge zone above the dielectric surface is approximately five times thicker than that in the case of negative polarity. The characteristic aspects of numerical simulation of the streamer phase of a surface barrier discharge are discussed. The numerical results on the density of the charge stored at the dielectric surface and on the length of the discharge zone agree with the experimental data.

PACS numbers

52.80.Tn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. T. Samoĭlovich, V. I. Gibalov, and K. V. Kozlov, Physical Chemistry of Barrier Discharge (Mosk. Gos. Univ., Moscow, 1989) [in Russian].Google Scholar
  2. 2.
    Nonequilibrium Air Plasmas at Atmospheric Pressures, Ed. by K. H. Becker, U. Kogelschatz, K. H. Schoenbach, and R. J. Barker (IOP, Bristol, 2004).Google Scholar
  3. 3.
    G. Artana, J. D’Adamo, L. Leger, et al., in Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2001, Paper 2001-0351.Google Scholar
  4. 4.
    S. Leonov, V. Gromov, A. Kuriachy, and D. Yarantsev, in Proceedings of the 43th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2005, Paper 2005-0780.Google Scholar
  5. 5.
    T. S. Corke and M. L. Post, in Proceedings of the 43th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2005, Paper 2005-0783.Google Scholar
  6. 6.
    K. D. Hall, E. J. Jumper, T. C. Corke, and T. E. McLaughlin, in Proceedings of the 43th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2005, Paper 2005-0563.Google Scholar
  7. 7.
    V. I. Gibalov and G. J. Pietsch, J. Phys. D 33, 2618 (2000).CrossRefADSGoogle Scholar
  8. 8.
    K. V. Kozlov, H.-E. Wagner, R. Brandenburg, and P. Michel, J. Phys. D 34, 3164 (2001).CrossRefADSGoogle Scholar
  9. 9.
    S. Roy and D. V. Gaitonde, in Proceedings of the 35th AIAA Fluid Dynamics Conference and Exhibit, Toronto, 2005, Paper 2005-4631.Google Scholar
  10. 10.
    A. V. Likhanskii, M. N. Shneider, S. O. Macheret, and R. B. Miles, in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2006, Paper 2006-1204.Google Scholar
  11. 11.
    A. V. Likhanskii, M. N. Shneider, S. O. Macheret, and R. B. Miles, in Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2007, Paper 2007-633.Google Scholar
  12. 12.
    J. P. Boeuf, Y. Lagmich, Th. Callegary, and L. C. Pichford, in Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2007, Paper 2007-183.Google Scholar
  13. 13.
    E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (MFTI, Moscow, 1997; CRC, Boca Raton, 1998).Google Scholar
  14. 14.
    N. L. Aleksandrov, F. I. Vysikailo, R. Sh. Islamov, et al., Teplofiz. Vys. Temp. 19, 22 (1981).ADSGoogle Scholar
  15. 15.
    N. L. Aleksandrov, A. E. Bazelyan, E. M. Bazelyan, and I. V. Kochetov, Fiz. Plazmy 21, 60 (1995) [Plasma Phys. Rep. 21, 57 (1995)].Google Scholar
  16. 16.
    I. A. Kossyi, A. Yu. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992).CrossRefADSGoogle Scholar
  17. 17.
    G. H. Wannier, Bell. Syst. Techn. J. 32, 170 (1963).Google Scholar
  18. 18.
    S. W. Rayment and J. L. Moruzzi, Intern. J. Mass Spectrom. Ion Phys. 26, 321 (1978).CrossRefGoogle Scholar
  19. 19.
    B. M. Smirnov, Negative Ions (McGraw-Hill, New York, 1982).Google Scholar
  20. 20.
    N. L. Aleksandrov and A. M. Konchakov, Teplofiz. Vys. Temp. 21, 1 (1983).ADSGoogle Scholar
  21. 21.
    Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Énergoatomizdat, Moscow, 1991; CRC, Boca Raton, 1997).Google Scholar
  22. 22.
    B. M. Smirnov, Ions and Excited Atoms in Plasma (Atomizdat, Moscow, 1974) [in Russian].Google Scholar
  23. 23.
    M. B. Zheleznyak, A. Kh. Mnatsakanyan, and S. V. Sizykh, Teplofiz. Vys. Temp. 20, 423 (1982).ADSGoogle Scholar
  24. 24.
    Ch. K. Birdsall and A. B. Langdon, Plasma Physics Via Computer Simulation (McGraw-Hill, New-York, 1985).Google Scholar
  25. 25.
    S. K. Godunov and V. S. Ryabenki, Introduction to the Theory of Difference Schemes (Fizmatgiz, Moscow, 1962; North Holland, Amsterdam, 1964).Google Scholar
  26. 26.
    G. E. Georghiou, A. P. Papadakis, R. Morrow, and A. C. Metaxas, J. Phys. D 38, R303 (2005).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. R. Solov’ev
    • 1
  • A. M. Konchakov
    • 1
  • V. M. Krivtsov
    • 1
  • N. L. Aleksandrov
    • 1
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyĭ, Moscow oblastRussia

Personalised recommendations