Advertisement

Plasma Physics Reports

, 34:555 | Cite as

Effect of the dipole-dipole interaction of particles in an active medium on the character of superradiation

  • V. V. Berezovsky
  • L. I. Men’shikov
  • S. Oberg
  • C. D. Latham
Plasma Radiation
  • 27 Downloads

Abstract

The motion of a system of interacting nonlinear charged oscillators is investigated numerically. Because of nonlinearity, the total collective electric field gives rise to a phasing effect—correlations in the phases of the oscillators. The consequence is superradiation—the enhanced spontaneous short-term emission of the energy stored in the oscillators. It is shown that the oscillations of the oscillators become stochastic because of the dipole-dipole interaction between them and their nearest neighbors. As a result, as the density of the oscillators increases, distant collective correlations are suppressed, superradiation ceases to be generated, and radiation is shielded in the medium. The phenomena considered in the present paper can play an important role in cyclotron emission from a plasma and thus should be taken into account in emission calculations. The process whereby the energy of the transverse electron motion in electron cooling devices decreases is analyzed as an example. This process occurs as a result of the development of cyclotron maser instability and has the nature of superradiation. The onset of correlations between individual electrons moving in their Larmor circles is the initial, linear stage of instability developing in the plasma. Superradiation is the final, nonlinear instability stage.

PACS numbers

52.25.Os 42.50.Fx 29.27.Bd 

References

  1. 1.
    R. H. Dicke, Phys. Rev. 93, 99 (1954).zbMATHCrossRefADSGoogle Scholar
  2. 2.
    N. Skribanowitz, I. P. Herman, J. C. MacGillivray, et al., Phys. Rev. Lett. 30, 309 (1973).CrossRefADSGoogle Scholar
  3. 3.
    A. V. Gaponov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 2, 450 (1959).Google Scholar
  4. 4.
    A. V. Gaponov, Zh. Éksp. Teor. Fiz. 39, 326 (1960) [Sov. Phys. JETP 12, 232 (1960)].MathSciNetGoogle Scholar
  5. 5.
    A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 10, 1414 (1967) [Radiophys. Quant. Electron. 10, 794 (1967)].Google Scholar
  6. 6.
    M. Gross and S. Haroche, Phys. Rep. 93, 301 (1982).CrossRefADSGoogle Scholar
  7. 7.
    S. Stenholm, Phys. Rep. 6, 1 (1975).CrossRefADSGoogle Scholar
  8. 8.
    L. I. Men’shikov, Usp. Fiz. Nauk 169, 113 (1999) [Phys. Usp. 42, 107 (1999)].Google Scholar
  9. 9.
    D. V. Sivukhin, General Course of Physics, Vol. 3: Electricity (Nauka, Moscow, 1996) [in Russian].Google Scholar
  10. 10.
    J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941; Gostekhizdat, Moscow, 1948).zbMATHGoogle Scholar
  11. 11.
    R. Friedberg, S. R. Hartmann, and J. T. Manassah, Phys. Lett. A 40, 365 (1972).CrossRefADSGoogle Scholar
  12. 12.
    R. Friedberg and S. R. Hartmann, Phys. Rev. A 10, 1728 (1974).CrossRefADSGoogle Scholar
  13. 13.
    Yu. A. Il’inskiĭ and N. S. Maslova, Zh. Éksp. Teor. Fiz. 94(1), 171 (1988) [Sov. Phys. JETP 67, 96 (1988)].ADSGoogle Scholar
  14. 14.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).Google Scholar
  15. 15.
    S. V. Zaĭtsev, N. Yu. Gordeev, L. A. Graham, et al., Fiz. Tekh. Poluprovodn. 33, 1456 (1999).Google Scholar
  16. 16.
    G. I. Budker, At. Énerg. 22, 346 (1967).Google Scholar
  17. 17.
    V. V. Parkhomchuk and A. N. Skrinskiĭ, Usp. Fiz. Nauk 170, 473 (2000) [Phys. Usp. 43, 433 (2000)].CrossRefGoogle Scholar
  18. 18.
    I. N. Meshkov, Fiz. Élem. Chastits At. Yadra 25, 1487 (1994).Google Scholar
  19. 19.
    V. V. Zheleznyakov, Radiation in Astrophysical Plasmas (Yanus-K, Moscow, 1997) [in Russian].Google Scholar
  20. 20.
    V. V. Berezovskiĭ and L. I. Men’shikov, Pis’ma Zh. Éksp. Teor. Fiz. 86, 411 (2007) [JETP Lett. 86, 355 (2007)].Google Scholar
  21. 21.
    S. V. Golubev and A. G. Shalashov, Pis’ma Zh. Éksp. Teor. Fiz. 86, 98 (2007) [JETP Lett. 86, 91 (2007)].Google Scholar
  22. 22.
    A. K. Nekrasov and A. V. Timofeev, Zh. Éksp. Teor. Fiz. 59, 2175 (1970) [Sov. Phys. JETP 32, 1176 (1970)].Google Scholar
  23. 23.
    B. B. Kadomtsev, A. B. Mikhailovskii, and A. V. Timofeev, Zh. Éksp. Teor. Fiz. 47, 2266 (1964) [Sov. Phys. JETP 20, 1517 (1964)].Google Scholar
  24. 24.
    M. V. Nezlin, Usp. Fiz. Nauk 120, 481 (1976) [Sov. Phys. Usp. 19, 946 (1976)].Google Scholar
  25. 25.
    L. A. Ostrovskiĭ, S. A. Rybak, and L. Sh. Tsimring, Usp. Fiz. Nauk 150, 417 (1986) [Sov. Phys. Usp. 29, 1040 (1986)].Google Scholar
  26. 26.
    E. D. Trifonov, Soros. Obraz. Zh., No. 12, 75 (1996).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. V. Berezovsky
    • 1
  • L. I. Men’shikov
    • 2
  • S. Oberg
    • 3
  • C. D. Latham
    • 3
  1. 1.Lomonosov Pomor State UniversityArkhangelskRussia
  2. 2.Russian Research Centre Kurchatov InstituteMoscowRussia
  3. 3.Luleå University of TechnologyLuleåSweden

Personalised recommendations