Plasma Physics Reports

, Volume 34, Issue 5, pp 392–402

On the possibility of the electron-hole plasma conductivity in diamond being negative

  • A. S. Baturin
  • V. N. Gorelkin
  • V. R. Solov’ev
  • I. V. Chernousov
Plasma Kinetics

Abstract

The mobilities of charge carriers in boron-doped diamond at low temperatures are estimated by numerically solving the Boltzmann equation for a steady-state nonequilibrium velocity distribution function of the carriers with allowance for their scattering by phonons. Estimates show that, at temperatures of up to 100 K, charge carriers with a negative mobility exist over a fairly broad (on the order of 100 K) range of their energies. In the steady-state case, the absolute mobility integrated over the distribution function turns out to be positive, but there are grounds to suppose that, in the case of an unsteady pulsed source of charge carriers, it may become negative.

PACS numbers

72.20.Dp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Rokhlenko, Zh. Éksp. Teor. Fiz. 75, 1315 (1978) [Sov. Phys. JETP 48, 663 (1978)].ADSGoogle Scholar
  2. 2.
    S. Shizgal and D. R. A. Mahon, Phys. Rev. A 32, 3669 (1985).CrossRefADSGoogle Scholar
  3. 3.
    J. M. Warman, U. Sowada, and P. De Haas, Phys. Rev. A 31, 1974 (1985).CrossRefADSGoogle Scholar
  4. 4.
    N. A. Dyatko, M. Kapitelli, S. Longo, and A. P. Napartovich, Fiz. Plazmy 24, 745 (1998) [Plasma Phys. Rep. 24, 691 (1998)].Google Scholar
  5. 5.
    N. A. Dyatko, I. V. Kochetov, and A. P. Napartovich, Pis’ma Zh. Tekh. Fiz. 13, 1457 (1987) [Sov. Tech. Phys. Lett. 13, 610 (1987)].Google Scholar
  6. 6.
    V. F. Elesin, Usp. Fiz. Nauk 175, 197 (2005) [Phys. Usp. 48, 183 (2005)].Google Scholar
  7. 7.
    T. N. Mamedov, A. G. Dutov, D. Herlah, Preprint No. P14-2004-104 (Joint Inst. for Nuclear Research, Dubna, 2004).Google Scholar
  8. 8.
    T. N. Mamedov, D. Andreika, A. S. Baturin, Physica B 374–375, 390 (2006).CrossRefGoogle Scholar
  9. 9.
    A. S. Baturin, V. N. Gorelkin, V. S. Rastunkov, and V. R. Soloviev, Physica B 374–375, 340 (2006).CrossRefGoogle Scholar
  10. 10.
    A. S. Baturin, Yu. M. Belousov, V. N. Gorelkin, et al., Zh. Éksp. Teor. Fiz. 131 155 (2007) [JETP 104, 139 (2007)].Google Scholar
  11. 11.
    M. Nagai, R. Shimano, K. Horiuchi, and M. Kuwata-Gonokami, Phys. Rev. B 68, 081 202 (2003).Google Scholar
  12. 12.
    V. N. Abakumov, V. I. Perel’, and I. N. Yassievich, Fiz. Tekh. Poluprovodn. 12, 3 (1978).Google Scholar
  13. 13.
    M. Lax, Phys. Rev. 119, 1502 (1960).CrossRefADSGoogle Scholar
  14. 14.
    V. N. Abakumov and I. N. Yassievich, Zh. Éksp. Teor. Fiz. 71, 657 (1976) [Sov. Phys. JETP 44, 345 (1976)].ADSGoogle Scholar
  15. 15.
    V. N. Abakumov, V. I. Perel’, and I. N. Yassievich, Zh. Éksp. Teor. Fiz. 72, 674 (1977) [Sov. Phys. JETP 45, 354 (1977)].Google Scholar
  16. 16.
    J. Holstein, Phys. Rev. 70, 367 (1946).CrossRefADSGoogle Scholar
  17. 17.
    A. S. Baturin, V. N. Gorelkin, and V. R. Solov’ev, Élektron. Zh. Issled. Ross. 253, 2423 (2006); http://zhurnal.ape.relarn.ru/articles/2006/253.pdf. Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. S. Baturin
    • 1
  • V. N. Gorelkin
    • 1
  • V. R. Solov’ev
    • 1
  • I. V. Chernousov
    • 1
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyĭ, Moscow oblastRussia

Personalised recommendations