Plasma Physics Reports

, Volume 32, Issue 11, pp 921–926

Formation of nonquasineutral vortex plasma structures with a zero net current

  • A. V. Gordeev
Nonlinear Phenomena


A nonquasineutral vortex structure with a zero net current is described that arises as a result of electron drift in crossed magnetic and electric fields, the latter being produced by charge separation on a spatial scale of about the magnetic Debye radius rB = |B|/(4πene). In such a structure with a radius of rrB, the magnetic field is maintained by a drift current on the order of the electron Alfvén current JAe = mec3/(2e) and can become as strong as Bmec2/(er). Estimates show that, in a plasma with a density of ne = 1021−1023 cm−3 and with nonzero electron vorticity driven by high-power laser radiation on a time scale on the order of θpe−1, magnetic fields with a strength of B ∼ 108−109 G are generated on micron and submicron scales. The system with closed current that is considered in the present paper can also serve as a model of hot spots in the channel of a Z-pinch.

PACS numbers

52.25.Xz 52.30.-q 52.30.Ex 52.55.-s 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Gordeev and T. V. Losseva, Pis’ma Zh. Éksp. Teor. Fiz. 70, 669 (1999) [JETP Lett. 70, 684 (1999)].Google Scholar
  2. 2.
    A. V. Gordeev and T. V. Losseva, Fiz. Plazmy 29, 809 (2003) [Plasma Phys. Rep. 29, 748 (2003)].Google Scholar
  3. 3.
    A. V. Gordeev and T. V. Losseva, Fiz. Plazmy 31, 30 (2005) [Plasma Phys. Rep. 31, 26 (2005)].Google Scholar
  4. 4.
    G. S. Sarkisov, V. Yu. Vushenkov, V. T. Tishonshuk, et al., Pis’ma Zh. Éksp. Teor. Fiz. 66, 787 (1997) [JETP Lett. 66, 828 (1997)].Google Scholar
  5. 5.
    K. Krushelnick, E. L. Clark, Z. Najmudin, et al., Phys. Rev. Lett. 83, 737 (1999).CrossRefADSGoogle Scholar
  6. 6.
    M. Borghesi, A. J. MacKinnon, A. R. Bell, et al., Phys. Rev. Lett. 81, 112 (1998).CrossRefADSGoogle Scholar
  7. 7.
    J. Zweiback, R. A. Smith, T. E. Cowan, et al., Phys. Rev. Lett. 84, 2634 (2000).CrossRefADSGoogle Scholar
  8. 8.
    V. S. Belyaev, V. I. Vinogradov, A. S. Kirilov, et al., Zh. Éksp. Teor. Fiz. 126, 819 (2004) [JETP 99, 708 (2004)].Google Scholar
  9. 9.
    M. Tatarakis, A. Gopal, I. Watts, et al., Phys. Plasmas 9, 2244 (2002).CrossRefADSGoogle Scholar
  10. 10.
    T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, and D. A. Hammer, Phys. Plasmas 8, 1305 (2001).CrossRefADSGoogle Scholar
  11. 11.
    J. Sakai, S. Saito, H. Mae, et al., Phys Plasmas 9, 2959 (2002).CrossRefADSGoogle Scholar
  12. 12.
    U. Wagner, M. Tatarakis, A. Gopal, et al., Phys. Rev. E 70, 021401 (2004).Google Scholar
  13. 13.
    E. V. Aglitskiĭ, V. V. Vikhrev, A. V. Gulov, et al., Spectroscopy of Multicharged Ions in Hot Plasmas (Nauka, Moscow, 1981) [in Russian].Google Scholar
  14. 14.
    Higher Transcendental Functions (Bateman Manuscript Project), Ed. by A. Erdelyi (McGraw-Hill, New York, 1953; Nauka, Moscow, 1966), Vol. 2.Google Scholar
  15. 15.
    A. V. Gordeev and S. V. Levchenko, Pis’ma Zh. Éksp. Teor. Fiz. 67, 461 (1998) [JETP Lett. 67, 482 (1998)].Google Scholar
  16. 16.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Fizmatgiz, Moscow, 1959; Pergamon, Oxford, 1960).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. V. Gordeev
    • 1
  1. 1.Russian Research Centre Kurchatov InstituteMoscowRussia

Personalised recommendations