Advertisement

Plasma Physics Reports

, Volume 32, Issue 5, pp 363–377 | Cite as

Studies of the impurity pellet ablation in the high-temperature plasma of magnetic confinement devices

  • V. Yu. Sergeev
  • O. A. Bakhareva
  • B. V. Kuteev
  • M. Tendler
Magnetic Confinement Systems

Abstract

The ablation of impurity pellets in tokamak and stellarator plasmas is investigated. Different mechanisms for shielding the heat fluxes from the surrounding plasma to the pellet surface are discussed. A model for impurity pellet ablation is developed that can account for both neutral and electrostatic shielding. It is shown that the experimental values of the impurity pellet ablation rate are well described by the neutral gas shielding model over a wide range of plasma temperatures and densities. Taking into account the electrostatic shielding leads to worse agreement between the predictions of the model and the experimental data; this result still remains unclear. Scaling laws are obtained that allow one to estimate the local ablation rate of impurity pellets made of various materials over a wide range of plasma parameters in the neutral gas shielding model.

PACS numbers

54.40.Hf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. V. Kuteev, Zh. Tekh. Fiz. 69(9), 63 (1999) [Tech. Phys. 44, 1058 (1999)].Google Scholar
  2. 2.
    S. L. Milora, W. A. Houlberg, L. L. Lenguel, and V. Mertens, Nucl. Fusion 35, 657 (1995).CrossRefGoogle Scholar
  3. 3.
    M. Kaufmann, K. Lackner, and L. L. Lengyel, Nucl. Fusion 26, 171 (1986).Google Scholar
  4. 4.
    W. A. Houlberg, S. E. Milora, and S. E. Attenberger, Nucl. Fusion 28, 595 (1988).Google Scholar
  5. 5.
    V. A. Rozhansky, Fiz. Plazmy 15, 1101 (1989) [Sov. J. Plasma Phys. 15, 638 (1989)].Google Scholar
  6. 6.
    B. V. Kuteev, V. Yu. Sergeev, and L. D. Tsendin, Fiz. Plazmy 10, 1172 (1984) [Sov. J. Plasma Phys. 10, 675 (1984)].Google Scholar
  7. 7.
    V. A. Rozhansky, I. Yu. Veselova, and S. P. Voskoboynikov, Plasma Phys. Controlled Fusion 37, 399 (1995).CrossRefADSGoogle Scholar
  8. 8.
    V. Yu. Sergeev, K. V. Khlopenkov, B. V. Kuteev, et al., Plasma Phys. Controlled Fusion 40, 1785 (1998).CrossRefADSGoogle Scholar
  9. 9.
    L. Ledl, R. Burhenn, L. Lengyel, et al., Nucl. Fusion 44, 600 (2004).CrossRefADSGoogle Scholar
  10. 10.
    P. B. Parks, J. S. Leffler, and R. K. Fisher, Nucl. Fusion 28, 477 (1988).Google Scholar
  11. 11.
    B. V. Kuteev, Nucl. Fusion 35, 431 (1995).CrossRefGoogle Scholar
  12. 12.
    B. V. Kuteev and L. D. Tsendin, Res. Report No. NIFS-717 (National Inst. for Fusion Science, Nagoya, 2001).Google Scholar
  13. 13.
    B. V. Kuteev, V. Yu. Sergeev, and S. Sudo, Nucl. Fusion 35, 1167 (1995).CrossRefGoogle Scholar
  14. 14.
    J. G. Laframboise, Report No. 100 (Institute for Aerospace Studies, Univ. of Toronto, Toronto, 1966).Google Scholar
  15. 15.
    P. B. Parks and R. J. Turnball, Phys. Fluids 20, 1735 (1978).CrossRefADSGoogle Scholar
  16. 16.
    A. K. Macaulay, Nucl. Fusion 34, 44 (1994).CrossRefGoogle Scholar
  17. 17.
    P. B. Parks, Private communication.Google Scholar
  18. 18.
    V. Yu. Sergeev and D. A. Polivaev, Fusion Eng. Design 34–35, 215 (1997).CrossRefGoogle Scholar
  19. 19.
    V. Yu. Sergeev, S. M. Egorov, B. V. Kuteev, et al., ECA 18B, 1364 (1994).Google Scholar
  20. 20.
    L. Ledl, R. Burhenn, V. Sergeev, et al., ECA 23J, 1477 (1999).Google Scholar
  21. 21.
    V. Yu. Sergeev, E. S. Marmar, J. A. Snipes, et al., Rev. Sci. Instrum. 63, 4984 (1992).CrossRefADSGoogle Scholar
  22. 22.
    V. M. Timokhin, V. Yu. Sergeev, and B. V. Kuteev, Fiz. Plazmy 27, 195 (2001) [Plasma Phys. Rep. 27, 181 (2001)].Google Scholar
  23. 23.
    N. Tamura, S. Sudo, K. V. Khlopenkov, et al., Plasma Phys. Controlled Fusion 45, 27 (2003).CrossRefADSGoogle Scholar
  24. 24.
    J. Wesson, Tokamaks (Clarendon, Oxford, 1997), p. 224.Google Scholar
  25. 25.
    V. A. Rozhansky and L. D. Tsendin, Transport Phenomena in Partially Ionized Plasma (Taylor & Francis, New York, 2001).Google Scholar
  26. 26.
    Yu. M. Kagan and V. I. Perel’, Usp. Fiz. Nauk 81, 409 (1963) [Sov. Phys. Usp. 6, 767 (1964)].Google Scholar
  27. 27.
    B. V. Kuteev, A. Yu. Kostryukov, and O. A. Bakhareva, Zh. Tekh. Fiz. 72(8), 1 (2002) [Tech. Phys. 47, 935 (2002)].Google Scholar
  28. 28.
    B. V. Kuteev, Yu. V. Martynenko, V. G. Skokov, et al., in Proceedings of the 31st EPS Conference on Plasma Physics, London, 2004, ECA 28G, P-1.205 (2004).Google Scholar
  29. 29.
    B. V. Kuteev, V. Yu. Sergeev, and A. P. Umov, Fiz. Plazmy 14, 3 (1988) [Sov. J. Plasma Phys. 14, 1 (1988)].Google Scholar
  30. 30.
    B. B. Kadomtsev, Rep. Progr. Phys. 59, 91 (1996).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. Yu. Sergeev
    • 1
  • O. A. Bakhareva
    • 1
  • B. V. Kuteev
    • 2
  • M. Tendler
    • 3
  1. 1.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia
  2. 2.Nuclear Fusion InstituteRussian Research Centre Kurchatov InstituteMoscowRussia
  3. 3.Royal Technological InstituteStockholmSweden

Personalised recommendations