Skip to main content
Log in

Low-Energy E1 Strength Distributions of 68Ni

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We study the effects of the coupling between one- and two-phonon components of the wave functions on the low-energy electric dipole response of 68Ni in a microscopic model based on an effective Skyrme interaction SLy5. The finite rank separable approach for the quasiparticle random phase approximation is used. The effect of phonon-phonon coupling leads to the fragmentation of the \(E1\) strength to a lower energy and improves the agreement with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. D. Savran, T. Aumann, and A. Zilges, “Experimental studies of the pygmy dipole resonance,” Prog. Part. Nucl. Phys. 70, 210–245 (2013).

    Article  ADS  Google Scholar 

  2. N. Paar, D. Vretenar, E. Khan, and G. Colò, “Exotic modes of excitation in atomic nuclei far from stability,” Rep. Prog. Phys. 70, 691–793 (2007).

    Article  ADS  Google Scholar 

  3. X. Roca-Maza and N. Paar, “Nuclear equation of state from ground and collective excited state properties of nuclei,” Prog. Part. Nucl. Phys. 101, 96–176 (2018).

    Article  ADS  Google Scholar 

  4. V. G. Soloviev, Ch. Stoyanov, and V. V. Voronov, “The influence of the giant dipole resonance on radiative strength functions in spherical nuclei,” Nucl. Phys. A 304, 503–519 (1978).

    Article  ADS  Google Scholar 

  5. V. G. Soloviev, Theory of Atomic Nuclei: Quasiparticles and Phonons (Institute of Physics, Bristol and Philadelphia, 1992).

    Google Scholar 

  6. N. V. Giai, Ch. Stoyanov, and V. V. Voronov, “Finite rank approximation for random phase approximation calculations with Skyrme interactions: An application to Ar isotopes,” Phys. Rev. C 57, 1204–1209 (1998).

    Article  ADS  Google Scholar 

  7. A. P. Severyukhin, V. V. Voronov, and N. V. Giai, “Effects of the particle-particle channel on properties of low-lying vibrational states,” Phys. Rev. C 77, 024 322 (2008).

    Article  Google Scholar 

  8. A. P. Severyukhin, V. V. Voronov, and N. V. Giai, “Effects of phonon-phonon coupling on low-lying states in neutron-rich Sn isotopes,” Eur. Phys. J. A 22, 397–403 (2004).

    Article  ADS  Google Scholar 

  9. A. P. Severyukhin, N. N. Arsenyev, and N. Pietralla, “Proton-neutron symmetry in 92Zr, 94Mo with Skyrme interactions in a separable approximation,” Phys. Rev. C 86, 024 311 (2012).

    Article  Google Scholar 

  10. A. P. Severyukhin, S. Åberg, N. N. Arsenyev, and R. G. Nazmitdinov, “Spreading widths of giant resonances in spherical nuclei: Damped transient response,” Phys. Rev. C 95, 061 305(R) (2017).

  11. N. N. Arsenyev, A. P. Severyukhin, V. V. Voronov, and N. V. Giai, “Influence of complex configurations on the properties of the pygmy dipole resonance in neutron-rich Ca isotopes,” Phys. Rev. C 95, 054 312 (2017).

    Article  Google Scholar 

  12. N. N. Arsenyev, A. P. Severyukhin, V. V. Voronov, and N. V. Giai, “Effects of 2 particle-2 hole configurations on dipole states in neutron-rich \(N = 80 - 84\) isotones,” Phys. Part. Nucl. 48, 876–878 (2017).

    Article  Google Scholar 

  13. O. Wieland, et al., “Search for the pygmy dipole resonance in 68Ni at 600 MeV/nucleon,” Phys. Rev. Lett. 102, 092 502 (2009).

    Article  Google Scholar 

  14. D. M. Rossi, et al., “Measurement of the dipole polarizability of the unstable neutron-rich nucleus \(^{{68}}\)Ni,” Phys. Rev. Lett. 111, 242 503 (2013).

    Article  Google Scholar 

  15. N. S. Martorana, et al., “First measurement of the isoscalar excitation above the neutron emission threshold of the pygmy dipole resonance in 68Ni,” Phys. Lett. B 782, 112–116 (2018).

    Article  ADS  Google Scholar 

  16. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, “A Skyrme parametrization from subnuclear to neutron star densities. Part II: Nuclei far from stabilities,” Nucl. Phys. A 635, 231–256 (1998).

    Article  ADS  Google Scholar 

  17. A. P. Severyukhin, V. V. Voronov, I. N. Borzov, N. N. Arsenyev, and N. V. Giai, “Influence of \(2p{\text{--}}2h\) configurations on \(\beta \)-decay rates,” Phys. Rev. C 90, 044 320 (2014).

    Article  Google Scholar 

  18. J. Terasaki, J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, and M. Stoitsov, “Self-consistent description of multipole strength in exotic nuclei: Method,” Phys. Rev. C 71, 034 310 (2005).

    Article  Google Scholar 

  19. N. Bree, et al., “Coulomb excitation of \(_{{28}}^{{68}}\)Ni\(_{{40}}\) at “safe” energies,” Phys. Rev. C 78, 047301 (2008).

    Article  ADS  Google Scholar 

  20. R. Broda, et al., “Spectroscopic study of the \(^{{64,66,68}}\)Ni isotopes populated in \(^{{64}}\)Ni\({{ + }^{{238}}}\)U collisions,” Phys. Rev. C 86, 064312 (2012).

    Article  ADS  Google Scholar 

  21. D. Vretenar, N. Paar, P. Ring, and G. A. Lalazissis, “Collectivity of the low-lying dipole strength in relativistic random phase approximation,” Nucl. Phys. A 692, 496–517 (2001).

    Article  ADS  Google Scholar 

  22. O. Achakovskiy, A. Avdeenkov, S. Goriely, S. Kamerdzhiev, and S. Krewald, “Impact of phonon coupling on the photon strength function,” Phys. Rev. C 91, 034 620 (2015).

    Article  Google Scholar 

  23. E. Litvinova, P. Ring, and V. Tselyaev, “Relativistic two-phonon model for the low-energy nuclear response,” Phys. Rev. C 88, 044 320 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Arsenyev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsenyev, N.N., Severyukhin, A.P., Voronov, V.V. et al. Low-Energy E1 Strength Distributions of 68Ni. Phys. Part. Nuclei 50, 528–531 (2019). https://doi.org/10.1134/S1063779619050034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779619050034

Navigation