Advertisement

Physics of Particles and Nuclei

, Volume 49, Issue 5, pp 963–965 | Cite as

Sigma Models with Complex, Graded and η-Deformed Target Spaces

  • D. Bykov
Article
  • 14 Downloads

Abstract

I describe a class of two-dimensional σ-models with complex homogeneous target spaces, whose equations of motion admit zero-curvature representations. I point out the relation to models with \({{\mathbb{Z}}_{m}}\)-graded target spaces and to the so-called η-deformed models.

Notes

ACKNOWLEDGMENTS

I am grateful to I.Ya. Aref’eva, S. Kuzenko, O. Lechtenfeld, K. Zarembo, P. Zinn-Justin for discussions. I am indebted to Prof. A.A. Slavnov and to my parents for support and encouragement. I would also like to thank E. Ivanov and S. Fedoruk for the invitation to participate in the conference “Supersymmetries and Quantum Symmetries” in Dubna.

REFERENCES

  1. 1.
    K. Pohlmeyer, “Integrable Hamiltonian systems and interactions through quadratic constraints,” Commun. Math. Phys. 46, 207 (1976).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    D. Bykov, “Complex structures and zero-curvature equations for \(\sigma \)-models,” Phys. Lett. B 760, 341 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    C. Klimcik, “Yang–Baxter sigma models and dS/AdS T duality,” JHEP 0212, 051 (2002).Google Scholar
  4. 4.
    F. Delduc, M. Magro, and B. Vicedo, “An integrable deformation of the \(Ad{{S}_{5}} \times {{S}^{5}}\) superstring action,” Phys. Rev. Lett. 112, 051601 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    D. Bykov, “Complex structure-induced deformations of σ-models,” JHEP 1703, 130 (2017).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    C. A. S. Young, “Non-local charges, Z(m) gradings and coset space actions,” Phys. Lett. B 632, 559–565 (2006).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    V. G. Kac, “Automorphisms of finite order of semisimple Lie algebras,” Funct. Anal. Appl. 3, 252–254 (1969).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    D. Bykov, “Cyclic gradings of Lie algebras and Lax pairs for σ-models,” Theor. Math. Phys. 189, 1734 (2016).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia
  2. 2.Arnold Sommerfeld Center for Theoretical Physics, Department für Physik, Ludwig-Maximilians-Universität MünchenMünchenGermany
  3. 3.Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-InstitutPotsdam-GolmGermany

Personalised recommendations