Advertisement

Physics of Particles and Nuclei

, Volume 49, Issue 5, pp 813–817 | Cite as

On Non-Relativistic 3D Spin-1 Theories

  • Eric A. Bergshoeff
  • Jan Rosseel
  • Paul K. Townsend
Article
  • 18 Downloads

Abstract

We describe non-relativistic limits of the 3D Proca and \(\sqrt {{\text{Proca}}} \) theories that yield spin-1 Schroedinger equations. Analogous results are found by generalized null reduction of the 4D Maxwell or complex self-dual Maxwell equations. We briefly discuss the extension to spin-2.

Notes

ACKNOWLEDGMENTS

E.B. thanks the organizers of the SQS’2017 workshop for providing a stimulating atmosphere and offering a diverse scientific programme. The work of PKT is partially supported by the STFC consolidated grant ST/P000681/1.

REFERENCES

  1. 1.
    E. A. Bergshoeff, J. Rosseel, and P. K. Townsend, Gravity and the spin-2 planar Schroedinger equation, arXiv:1712.10071[hep-th].Google Scholar
  2. 2.
    A. Gromov and D. T. Son, “Bimetric theory of fractional quantum hall states,” Phys. Rev. X 7, 041032 (2017); arXiv:1705.06739[cond-mat.str-el].Google Scholar
  3. 3a.
    P. K. Townsend, K. Pilch, and P. van Nieuwenhuizen, “Selfduality in odd dimensions,” Phys. Lett. B 136, 38 (1984);ADSMathSciNetCrossRefGoogle Scholar
  4. 3b.
    P. K. Townsend, K. Pilch, and P. van Nieuwenhuizen, “Addendum,” Phys. Lett. B 137, 443 (1984).MathSciNetCrossRefGoogle Scholar
  5. 4.
    C. Aragone and A. Khoudeir, “Selfdual massive gravity,” Phys. Lett. B 173, 141 (1986).ADSMathSciNetCrossRefGoogle Scholar
  6. 5a.
    S. Deser, R. Jackiw, and S. Templeton, “Topologically massive gauge theories,” Ann. Phys. 140, 372 (1982);ADSMathSciNetCrossRefGoogle Scholar
  7. 5b.
    S. Deser, R. Jackiw, and S. Templeton, Ann. Phys. 281, 409 (2000).ADSCrossRefGoogle Scholar
  8. 6.
    E. A. Bergshoeff, O. Hohm, and P. K. Townsend, “On higher derivatives in 3D gravity and higher spin gauge theories,” Ann. Phys. 325, 1118 (2010); arXiv:0911.3061[hep-th].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 7.
    J. Gomis and J. M. Pons, “Poincare transformations and Galilei transformations,” Phys. Lett. A 66, 463 (1978).ADSMathSciNetCrossRefGoogle Scholar
  10. 8.
    C. Duval, G. Burdet, H. P. Kunzle, and M. Perrin, “Bargmann structures and Newton-Cartan theory,” Phys. Rev. D 31, 1841 (1985).ADSMathSciNetCrossRefGoogle Scholar
  11. 9.
    B. Julia and H. Nicolai, “Null Killing vector dimensional reduction and Galilean geometrodynamics,” Nucl. Phys. B 439, 291 (1995), hep-th/9412002.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 10.
    L. Mezincescu, A. J. Routh, and P. K. Townsend, “Twistors and the massive spinning particle,” J. Phys. A 49, 025401 (2016); arXiv:1508.05350[hep-th].Google Scholar
  13. 11.
    J. Scherk and J. H. Schwarz, “How to get masses from extra dimensions,” Nucl. Phys. B 153 61 (1979).ADSMathSciNetCrossRefGoogle Scholar
  14. 12.
    E. A. Bergshoeff, O. Hohm, and P. K. Townsend, “Massive gravity in three dimensions,” Phys. Rev. Lett. 102, 201301 (2009); arXiv:0901.1766[hep-th].ADSMathSciNetCrossRefGoogle Scholar
  15. 13.
    P. A. Horvathy, M. S. Plyushchay, and M. Valenzuela, “Bosons, fermions and anyons in the plane, and supersymmetry,” Ann. Phys. 325, 1931 (2010); arXiv:1001.0274[hep-th]; P. A. Horvathy, M. S. Plyushchay, and M. Valenzuela, “Supersymmetry of the planar Dirac-Deser-Jackiw-Templeton system, and of its non-relativistic limit,” J. Math. Phys. 51, 092108 (2010); arXiv:1002.4729[hep-th].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Centre for Theoretical Physics, University of GroningenGroningenThe Netherlands
  2. 2.Faculty of Physics, University of ViennaViennaAustria
  3. 3.Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce RoadCambridgeU.K.

Personalised recommendations