Advertisement

Physics of Particles and Nuclei

, Volume 49, Issue 4, pp 774–780 | Cite as

Modern Purification Methods for Liquid Scintillators Intended for Recording Rare Events

  • G. Y. Novikova
Article
  • 4 Downloads

Abstract

Chromato-mass-spectrometry and UV/VIS spectroscopy are used to study the composition and properties of linear alkyl benzene (LAB) produced in Russia as the basic solvent for production of low-background liquid scintillators. The efficiency of LAB purification by reducing intrinsic radioactivity (U, Th) via water extraction (with addition of a strong chelate, dimethylaminomethylendiphosphonic acid) and sorption on Al2O3 in silica gel is studied. The purification method for removing potassium from scintillation fluors (PPO, BPO, p-terphenyl) is developed. It is shown that U and Th can be efficiently extracted from NdCl3 water solutions with 0.1 M TOPO solution in pseudocumene.

Notes

ACKNOWLEDGMENTS

The work was supported by the Russian Science Foundation, project no. 16-12-10322.

REFERENCES

  1. 1.
    Alimonti et al. (Borexino Collab.), “The Borexino detector at the Laboratori Nazional del Gran Sasso,” Nucl. Instrum. Methods Phys. Res., Sect. A 600, 568 (2009).Google Scholar
  2. 2.
    Borexino Collab., “Neutrinos from the primary proton-proton fusion process in the sun,” Nature 512, 383 (2014).CrossRefGoogle Scholar
  3. 3.
    G. Bellini et al. (Borexino Collab.), “Precision measurement of the 7Be solar neutrino interaction rate in Borexino,” Phys. Rev. Lett. 107, 141302 (2011).CrossRefADSGoogle Scholar
  4. 4.
    G. Bellini et al. (Borexino Collab.), “Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy,” Phys. Rev. D 89, 112007 (2014).CrossRefADSGoogle Scholar
  5. 5.
    J. Benzinger et al., “A scintillation purification system for Borexino solar neutrino detector,” Nucl. Instrum. Methods Phys. Res. A 587, 277 (2008).CrossRefADSGoogle Scholar
  6. 6.
    J. Bensinger, “The Borexino purification system,” Int. J. Mod. Phys. A 29, 1442002 (2014).CrossRefADSGoogle Scholar
  7. 7.
    H. O. Back, M. Balata, A. de Bari, et al., “Study of phenylxylylethane (PXE) as scintillator for low energy neutrino experiment,” Nucl. Instrum. Methods Phys. Res., Sect. A 585, 48 (2008).Google Scholar
  8. 8.
    Zelimer Djurcic et al. (JUNO Collab.), “JUNO conceptual design report,” arXiv:1508.07166v2 [physics. Ins-det] (2015).Google Scholar
  9. 9.
    Hu Wei, Fang Jian, Yu Boxiang, Zhang Xuan, Zhoi Li, Cai Xiao, and Sun Lijun, “The efficiency study of different purification methods for liquid scintillator,” arXiv:1601.02780v1 [ph ysics.ins-det] (2016).Google Scholar
  10. 10.
    I. R. Barabanov, L. B. Bezrukov, G. Ya. Novikova, and E. A. Yanovich, “The effect of the composition of a Nd-loaded liquid organic scintillator on light yield,” Instrum. Exp. Tech. 60, 533 (2017).CrossRefGoogle Scholar
  11. 11.
    I. R. Barabanov et al., “Large volume detector at Baksan neutrino observatory of INR RAS for investigation of natural neutrino fluxes for geo- and astrophysics,” Preprint 1422/2016 INR RAS (Inst. Nucl. Res., Russ. Acad. Sci., Moscow, 2016).Google Scholar
  12. 12.
    I. R. Barabanov, G. Ya. Novikova, and E. A. Yanovich, “Development of Nd-containing liquid organic scintillator, purification of NdCl3 and LAB from Th, U,” Preprint 1427/2016 INR RAS (Inst. Nucl. Res., Russ. Acad. Sci., Moscow, 2016).Google Scholar
  13. 13.
    L. B. Bezrukov, N. I. Bakulina, N. S. Ikonnikov, V. P. Morgalyuk, G. Ya. Novikova, and A. S. Chepurnov, “Study of transparency of the LAB produced in Russia as the solvent for large volume scintillators,” Preprint 1382/2014 INR RAS (Inst. Nucl. Res., Russ. Acad. Sci., Moscow, 2014).Google Scholar
  14. 14.
    I. R. Barabanov, L. B. Bezrukov, N. A. Danilov, S. V. Kutsev, V. P. Morgalyuk, G. Ya. Novikova, V. V. Sinev, and E. A. Yanovich, “Physicochemical study of linear alkylbenzene as base component for scintillation neutrino detectors,” Russ. J. Appl. Chem. 84, 377 (2011).CrossRefGoogle Scholar
  15. 15.
    G. Ya. Novikova and A. S. Redchin, “Study of stability and oxidability of the LAB (linear alkylbenzene) produced in Russia,” Preprint 1431/2017 INR RAS (Inst. Nucl. Res., Russ. Acad. Sci., Moscow, 2017).Google Scholar
  16. 16.
    A. V. Voevodskii, V. L. Dadykin, and O. G. Ryazhskaya, Prib. Tekh. Eksp., No. 1, 85 (1970).Google Scholar
  17. 17.
    T. Goldbruner, F. V. Feilitzsch, R. V. Hentig, and J. Jochum, “Neutron activation analysis of detector components for solar neutrino experiment BOREXINO,” J. Radioanal. Nucl. Chem. 216, 293 (1997).CrossRefGoogle Scholar
  18. 18.
    I. R. Barabanov, V. P. Morgalyuk, G. Ya. Novikova, and E. A. Yanovich, " Efficiency of different methods for removing U, Th, and K from a liquid scintillator," Radiochemistry 58, 625 (2016).CrossRefGoogle Scholar
  19. 19.
    Hu Wei, Fang Jian, Yu Boxiang, Zhang Xuan, Zhoi Li, Cai Xiao, and Sun Lijun, “The efficiency study of different purification methods for liquid scintillator,” arXiv: 1601.02780v1 [physics.ins-det] (2016).Google Scholar
  20. 20.
    J. B. Benziger, Michael Johnson, F. P. Calaprice, M. Chen, N. Darnton, R. Loeser, and R. B. Vogelaar, “A scintillator purification system for a large scale neutrino experiment,” Nucl. Instrum. Methods Phys. Res., Sect. A 417, 278 (1998).Google Scholar
  21. 21.
    R. L Nigro, R. G. Toro, M. E. Fragala, P. Rossi, P. Dapporto, and G. Malandrino, “Neodium β-diketonate glyme complexes: synthesis and characterization of volatile precursors for MOCVD applications,” Inorg. Chim. Acta 362, 4623 (2009).CrossRefGoogle Scholar
  22. 22.
    G. Ya. Novikova, N. I. Bakulina, A. V. Vologzhanina, B. V. Lokshin, and V. P. Morgalyuk, “Gadolinium(III) 3,5,5-trimethylhexanoate complexes for creation of stable Gd-loaded liquid organic scintillators,” Russ. J. Inorg. Chem. 61, 257 (2016).CrossRefGoogle Scholar
  23. 23.
    N. A. Danilov, Yu. S. Krylov, V. I. Zhilov, A. Yu. Tsivadze, E. V. Sal’nikova, I. R. Barabanov, L. B. Bezrukov, G. Ya. Novikova, E. Ya. Yanovich, C. Cattadori, S. Nisi, M. di Vacri, C. Salvo, and A. Ianni, " Exhaustive removal of thorium and uranium traces from neodymium by liquid extraction," Radiochemistry 53, 269 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute for Nuclear Research, Russian Academy of SciencesMoscowRussia

Personalised recommendations