Advertisement

Physics of Particles and Nuclei

, Volume 49, Issue 4, pp 758–763 | Cite as

Calorimetric System for Determination of Activity of a Neutrino Source Based on 51Cr

  • J. P. Kozlova
  • E. P. Veretenkin
  • V. N. Gavrin
  • O. V. Grekhov
  • T. V. Ibragimova
  • A. V. Kalikhov
  • A. A. Martynov
Article
  • 15 Downloads

Abstract

Within the framework of the BEST experiment project, a calorimetric system was developed to measure the activity of high-intensity (several MCi) neutrino sources based on 51Cr. In the range of thermal capacities of 250–520 W, the uncertainty of the heat release measurement is less than 0.25%. Taking into account the uncertainty of the energy release value for the 51Cr decay (0.23%), the activity of the neutrino source can be determined with an accuracy of ∼0.5%.

Notes

ACKNOWLEDGMENTS

The reported study was funded by RFBR according to the research project no. 16-02-00800.

REFERENCES

  1. 1.
    J. N. Abdurashitov et al. (SAGE Collab.), “Measurement of the response of a gallium metal solar neutrino experiment to neutrinos from the 51Cr source,” Phys. Rev. C 59, 2246–2263 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    J. N. Abdurashitov et al. (SAGE Collab.), “Measurement of the response of a Ga solar neutrino experiment to neutrinos from the 37Ar source,” Phys. Rev. C 73, 045805 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    P. Anselmann et al. (Gallex Collab.), “First results from the 51Cr neutrino source experiment with GALLEX detector,” Phys. Lett. B 342, 440–450 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    W. Hampel et al. (Gallex Collab.), “Final results of the 51Cr neutrino source experiments in GALLEX,” Phys. Lett. B 420, 114–126 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    C. Giunti and M. Laveder, “Short-baseline active-sterile neutrino oscillations?,” Mod. Phys. Lett. A 22, 2499–2510 (2007).ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, and E. M. Zavanin, “Light sterile neutrinos,” J. Phys. G 43, 033001 (2016); arXiv:1507.08204.Google Scholar
  7. 7.
    V. N. Gavrin, V. V. Gorbachev, E. P. Veretenkin, and B. T. Cleveland, Gallium experiments with artificial neutrino sources as a tool for investigation of transition to sterile states, arXiv:1006.2103 (2010).Google Scholar
  8. 8.
    E. P. Veretenkin, V. N. Gavrin, S. N. Danshin, T. V. Ibragimova, Yu. P. Kozlova, and I. N. Mirmov, “Calorimetric method for determination of 51Cr neutrino source activity,” Phys. At. Nucl. 78, 1606–1609 (2015).CrossRefGoogle Scholar
  9. 9.
    V. V. Gorbachev, V. N. Gavrin, T. V. Ibragimova, A. V. Kalikhov, Yu. M. Malyshkin, and A. A. Shikhin, “Measuring the activity of a 51Cr neutrino source based on the gamma-radiation spectrum,” Phys. At. Nucl. 78, 1617–1620 (2015).CrossRefGoogle Scholar
  10. 10.
    V. P. Chechev and N. K. Kuzmenko, Table de radionucléides 51 Cr, Vol. 1 (BIPM, 2004).Google Scholar
  11. 11.
    W. Wagner and A. Pruß, “The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use,” J. Phys. Chem. Ref. Data 31, 387–535 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • J. P. Kozlova
    • 1
  • E. P. Veretenkin
    • 1
  • V. N. Gavrin
    • 1
  • O. V. Grekhov
    • 1
  • T. V. Ibragimova
    • 1
  • A. V. Kalikhov
    • 1
  • A. A. Martynov
    • 1
  1. 1.Institute for Nuclear Research, Russian Academy of SciencesMoscowRussia

Personalised recommendations