Advertisement

Physics of Particles and Nuclei

, Volume 49, Issue 4, pp 690–697 | Cite as

CeSOX: Short-Distance Neutrino Oscillations with BoreXino

  • M. B. Gromov
Article
  • 12 Downloads

Abstract

Several experimental anomalies in neutrino physics may point to the possible existence of one or more additional neutrino species that do not interact weakly, the so-called sterile neutrinos. The third phase of the Borexino experiment (SOX) is devoted to verification of this hypothesis. Within the first stage (CeSOX) the count rate of antineutrino events in the liquid scintillation detector from the artificial source 144Ce–144Pr placed in the special pit beneath the setup will be measured. The smaller antineutrino flux, as compared to the original one, would indicate the presence of oscillations into sterile states. This paper gives a survey of the CeSOX experiment, including the general description, the characterization of the radioactive source and the specific features of its use, the description of the method for data analysis, and the expected results. Depending on the significance of the obtained scientific information, the decision on carrying out the second stage of the SOX experiment with the 51Cr source of electron neutrinos will be made.

Notes

ACKNOWLEDGMENTS

I thank the organizers of the conference for the great opportunity to attend and deliver the report. I am also grateful to my scientific advisor A.S. Chepurnov (NPI MSU) and the colleagues of the Borexino/SOX collaboration.This work was supported by the Russian Foundation for Basic Research, project no. 16-29-13014.

REFERENCES

  1. 1.
    D. S. Gorbunov, “Sterile neutrinos and their role in particle physics and cosmology,” Phys. Usp. 57, 503 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    C. Athanassopoulos et al. (LSND Collab.), “Candidate events in a search for oscillations,” Phys. Rev. Lett. 75, 2650 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    C. Athanassopoulos et al. (LSND Collab.), “Evidence for neutrino oscillations from muon decay at rest,” Phys. Rev. C 54, 2685 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    C. Athanassopoulos et al. (LSND Collab.), “Evidence for oscillations from the LSND experiment at the Los Alamos Meson Physics Facility,” Phys. Rev. Lett. 77, 3082 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    A. Aguilar et al. (LSND Collab.), “Evidence for neutrino oscillations from the observation of appearance in a beam,” Phys. Rev. D 64, 112007 (2001); arXiv:hep-ex/0104049v3.ADSCrossRefGoogle Scholar
  6. 6.
    C. Patrignani et al. (Particle Data Group), “Review of particle physics,” Chin. Phys. C 40, 100001 (2016); http://pdg.lbl.gov/.Google Scholar
  7. 7.
    B. Armbruster et al. (KARMEN Collab.), “Upper limits for neutrino oscillations from muon decay at rest,” Phys. Rev. D 65, 112001 (2002); arXiv:hep-ex/0203021v1.ADSCrossRefGoogle Scholar
  8. 8.
    A. A. Aguilar-Arevalo et al. (MiniBooNE Collab.), “Unexplained excess of electron like events from a 1‑GeV neutrino beam,” Phys. Rev. Lett. 102, 101802 (2009); arXiv:0812.2243v2.ADSCrossRefGoogle Scholar
  9. 9.
    A. A. Aguilar-Arevalo et al. (MiniBooNE Collab.), “Improved search for oscillations in the MiniBooNE Experiment,” Phys. Rev. Lett. 110, 161801 (2013); arXiv:1303.2588v2.ADSCrossRefGoogle Scholar
  10. 10.
    J. N. Abdurashitov et al. (SAGE Collab.), “Measurement of the response of a Ga solar neutrino experiment to neutrinos from a 37Ar source,” Phys. Rev. C 73, 045805 (2006); arXiv:nucl-ex/0512041v1.ADSCrossRefGoogle Scholar
  11. 11.
    J. N. Abdurashitov et al. (SAGE Collab.), “Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002-2007 data-taking period,” Phys. Rev. C 80, 015807 (2009); arXiv:0901.2200v3.ADSCrossRefGoogle Scholar
  12. 12.
    M. Laveder, “Unbound neutrino roadmaps,” Nucl. Phys. Proc. Suppl. 168, 344 (2007); https://www.sciencedirect.com/science/article/pii/S0920563207001752.ADSCrossRefGoogle Scholar
  13. 13.
    C. Giunti and M. Laveder, “Short-baseline active-sterile neutrino oscillations?” Mod. Phys. Lett. A 22, 2499 (2007).ADSCrossRefMATHGoogle Scholar
  14. 14.
    M. A. Acero, C. Giunti, and M. Laveder, “Limits on and disappearance from gallium and reactor experiments,” Phys. Rev. D 78, 073009(2008); arXiv:0711.4222v3.ADSCrossRefGoogle Scholar
  15. 15.
    C. Giunti and M. Laveder, “Statistical significance of the gallium anomaly,” Phys. Rev. C 83, 065504 (2011); arXiv:1006.3244v3.ADSCrossRefGoogle Scholar
  16. 16.
    C. Giunti, “Status of the sterile neutrino(s),” Report on 10th Anniversary of Borexino on Recent Developments in Neutrino Physics and Astrophysics, Assergi and L’Aquila, Italy, Sept. 4–7, 2017; https://goo.gl/C1QJCY.Google Scholar
  17. 17.
    G. Mention, M. Fechner, Th. Lasserre, Th. A. Mueller, D. Lhuillier, M. Cribier, and A. Letourneau, “Reactor antineutrino anomaly,” Phys. Rev. D 83, 073006 (2011); arXiv:1101.2755v4.ADSCrossRefGoogle Scholar
  18. 18.
    Th. A. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S. Cormon, M. Fechner, L. Giot, T. Lasserre, J. Martino, G. Mention, A. Porta, and F. Yermia, “Improved predictions of reactor antineutrino spectra,” Phys. Rev. C 83, 054615 (2011); arXiv:1101.2663v3.ADSCrossRefGoogle Scholar
  19. 19R19a.
    P. Huber, “Determination of antineutrino spectra from nuclear reactors,” Phys. Rev. C 84, 024617 (2011);ADSCrossRefGoogle Scholar
  20. 19b.
    Phys. Rev. C 85, 029901(E) (2012).Google Scholar
  21. 20.
    F. P. An et al. (Daya Bay Collab.), “Evolution of the reactor antineutrino flux and spectrum at Daya Bay,” Phys. Rev. Lett. 118, 251801 (2017); arXiv:1704.01082v2.Google Scholar
  22. 21.
    K. N. Abazajian (Int. Neutrino Commun.), “Light sterile neutrinos: a white paper,” arXiv:1204.5379v1 (2012).Google Scholar
  23. 22.
    G. Alimonti et al. (Borexino Collab.), “The Borexino detector at the Laboratori Nazionali del Gran Sasso,” Nucl. Instrum. Methods Phys. Res., Sect. A 600, 568 (2009); arXiv:0806.2400v1.Google Scholar
  24. 23.
    M. Cribier, M. Fechner, T. Lasserre, A. Letourneau, D. Lhuillier, G. Mention, D. Franco, V. Kornoukhov, and S. Schönert, “Proposed search for a fourth neutrino with a PBq antineutrino source,” Phys. Rev. Lett. 107, 201801 (2011); arXiv:1107.2335v2.ADSCrossRefGoogle Scholar
  25. 24.
    G. Bellini et al. (Borexino Collab.), “SOX: Short distance neutrino Oscillations with BoreXino,” J. High Energy Phys. 2013(8), 38 (2013); arXiv:1304.7721v2.CrossRefGoogle Scholar
  26. 25.
    G. Bellini et al. (Borexino Collab.), “Cosmogenic backgrounds in Borexino at 3800 m water-equivalent depth,” J. Cosmol. Astropart. Phys. 2013(8), 49 (2013); arXiv:1304.7381v2.CrossRefGoogle Scholar
  27. 26.
    M. Agostini et al. (Borexino Collab.), “Spectroscopy of geo-neutrinos from 2056 days of Borexino data,” Phys. Rev. D 92, 0311012015; arXiv:1506.04610v2.Google Scholar
  28. 27.
    A. S. Gerasimov, V. N. Kornoukhov, I. S. Sal’dikov, and G. V. Tikhomirov, “Production of high specific activity 144Ce for artificial sources of antineutrinos,” At. Energy 116, 54 (2014).CrossRefGoogle Scholar
  29. 28.
    S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, and E. M. Zavanin, “Light sterile neutrinos,” J. Phys. G 43, 033001 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Skobeltsyn Institute of Nuclear Physics, Moscow State UniversityMoscowRussia

Personalised recommendations