Advertisement

Physics of Particles and Nuclei

, Volume 49, Issue 2, pp 249–307 | Cite as

Multilayer Semiconductor Charged-Particle Spectrometers for Accelerator Experiments

  • Yu. B. Gurov
  • S. V. Lapushkin
  • V. G. Sandukovsky
  • B. A. Chernyshev
Article
  • 24 Downloads

Abstract

The current state of studies in the field of development of multilayer semiconductor systems (semiconductor detector (SCD) telescopes), which allow the energy to be precisely measured within a large dynamic range (from a few to a few hundred MeV) and the particles to be identified in a wide mass range (from pions to multiply charged nuclear fragments), is presented. The techniques for manufacturing the SCD telescopes from silicon and high-purity germanium are described. The issues of measuring characteristics of the constructed detectors and their impact on the energy resolution of the SCD telescopes and on the quality of the experimental data are considered. Much attention is given to the use of the constructed semiconductor devices in experimental studies at accelerators of PNPI (Gatchina), LANL (Los Alamos) and CELSIUS (Uppsala).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Kalpakchieva, Yu. E. Penionzhkevich, and Kh. G. Bolen, “Very neutron-rich isotopes of light elements,” Fiz. Elem. Chastits At. Yadra 30, 1429–1513 (1999) [Phys. Part. Nucl. 30, 627 (1999)].Google Scholar
  2. 2.
    B. Jonson, “Light dripline nuclei,” Phys. Rep. 389, 1–59 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    Exotic Nuclei and Nuclear/Particle Astrophysics, Ed. by S. Stoica, L. Trache, and R. E. Tribble (World Scientific Publishing, 2006).Google Scholar
  4. 4.
    Yu. B. Gurov, S. V. Lapushkin, B. A. Chernyshev, and V. G. Sandukovsky, “Search for superheavy hydrogen isotopes in pion absorption reactions,” Phys. Part. Nucl. 40, 558–581 (2009).CrossRefGoogle Scholar
  5. 5.
    R. Eisberg, D. Ingham, M. Makino, R. Cole, and C. Waddell, “Semiconductor detector telescopes for measuring proton energies up to 300 MeV—Problems and solutions,” Nucl. Instr. Methods Phys. Res. 101, 85–90 (1972).ADSCrossRefGoogle Scholar
  6. 6.
    J. F. Amann, P. D. Barnes, S. A. Dytman, J. A. Penkrot, A. C. Thompson, and R. H. Pehl, “Use of high-purity germanium detectors for intermediate-energy physics experiments,” Nucl. Instr. Methods Phys. Res. 126, 193–198 (1975).ADSCrossRefGoogle Scholar
  7. 7.
    G. Riepe, D. Protić, C. Sükösd, J. P. Didelez, N. Frascaria, E. Gerlic, E. Hourani, and M. Morlet, “Performance of a high-purity germanium multi-detector telescope for long-range particles,” Nucl. Instr. Methods Phys. Res. 177, 361–367 (1980).ADSCrossRefGoogle Scholar
  8. 8.
    B. Davids and C. N. Davids, “EMMA: A recoil mass spectrometer for ISAC-II at TRIUMF,” Nucl. Instr. Methods Phys. Res. A 544, 565–576 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    T. Uesaka, S. Shimoura, H. Sakai, G. P. A. Berg, K. Nakanishi, Y. Sasamoto, A. Saito, S. Michimasa, T. Kawabata, and T. Kubo, “The high resolution SHARAQ spectrometer,” Nucl. Instr. Methods Phys. Res. B 266, 4218–4222 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    J. T. Walton, F. S. Goulding, E. E. Haller, and R. H. Pehl, “Status and problems of semiconductor detectors,” Nucl. Instr. Methods Phys. Res. 196, 107–116 (1982).ADSCrossRefGoogle Scholar
  11. 11.
    R. H. Pehl, “Detector telescopes and their applications,” IEEE Trans. Nucl. Sci. NS-29, 1001–1007 (1982).Google Scholar
  12. 12.
    D. L. Friesel, B. S. Flanders, and R. H. Pehl, “A variable geometry high-purity germanium detector telescope system for use with intermediate energy charged particles,” Nucl. Instr. Methods Phys. Res. 207, 403–415 (1983).ADSCrossRefGoogle Scholar
  13. 13.
    G. Bellini, L. Foà, and M. Giorgi, “Semiconductor detectors for lifetime measurements and high space resolution,” Phys. Rep. 83, 9–38 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    R. H. Pehl, P. N. Luke, and D. L. Friesel, “Highpurity germanium charge-particle detectors: A LDLIUCF update,” Nucl. Instr. Methods Phys. Res. A 242, 103–110 (1985).ADSCrossRefGoogle Scholar
  15. 15.
    S. Pensotti, P. G. Rancoita, A. Seidman, L. Vismara, and M. Zambelli, “Large-area silicon detection in hadronic sampling calorimeter,” Nucl. Instr. Methods Phys. Res. A 257, 538–542 (1987).ADSCrossRefGoogle Scholar
  16. 16.
    V. G. Sandukovsky and V. I. Savel’ev, “Semiconductor track detectors,” Fiz. Elem. Chastits At. Yadra 22, 1347–1399 (1991).Google Scholar
  17. 17.
    P. Rehak and E. Gatti, “Semiconductor detectors in nuclear and particle physics,” AIP Conf. Proc. 338, 319–329 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    P. Beneš, P. Čermák, K. N. Gusev, A. A. Klimenko, V. E. Kovalenko, A. Kovalik, N. I. Rukhadze, A. V. Salamatin, F. Šimkovic, I. Štekl, V. V. Timkin, and Ts. Vylov, “The low background spectrometer TGV II for double beta decay measurements,” Nucl. Instr. Methods Phys. Res. A 569, 737–742 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    M. S. Wallace, M. A. Famiano, M.-J. van Goethem, A. M. Rogers, W. G. Lynch, J. Clifford, F. Delaunay, J. Lee, S. Labostov, M. Mocko, L. Morris, A. Moroni, B. E. Nett, D. J. Oostdyk, R. Krishnasamy, M. B. Tsang, R. T. de Souza, S. Hudan, L. G. Sobotka, R. J. Charity, J. Elson, and G. L. Engel, “The high resolution array (HiRA) for rare isotope beam experiments,” Nucl. Instr. Methods Phys. Res. A 583, 302–312 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    Yu. K. Akimov, M. G. Gornov, Yu. B. Gurov, G. A. Krykanova, P. V. Morokhov, K. O. Oganesyan, B. P. Osipenko, V. A. Pechkurov, A. P. Pichugin, A. K. Ponosov, S. Yu. Porokhovoi, and F. M. Sergeev, “Charged particle energy measurement with a layered semiconductor device,” Instrum. Exp. Tech. 23, 65–69 (1980).Google Scholar
  21. 21.
    M. G. Gornov, Yu. B. Gurov, S. V. Lapushkin, A. S. Lukin, P. V. Morokhov, K. O. Oganesyan, B. P. Osipenko, V. A. Pechkurov, A. P. Pichugin, A. K. Ponosov, S. Yu. Porokhovoi, F. M. Sergeev, and A. L. Kholmetskii, “Measuring the negative pion energy by a multilayer semiconductor srectrometer,” Instrum. Exp. Tech. 24, 330–337 (1981).Google Scholar
  22. 22.
    M. G. Gornov, Yu. B. Gurov, M. A. Morokhovets, K. N. Neimark, B. P. Osipenko, and V. G. Sandukovskii, “Surface-barrier detectors made of the phosphorus-doped silicon in the thermal neutron flow,” Prib. Tekh. Eksp., No. 5, 53–54 (1983).Google Scholar
  23. 23.
    M. G. Gornov, Yu. B. Gurov, Zai Te Kim, Chan Khvan Kim, B.P. Osipenko, and J. Yurkowski, “Li-thermodiffused semiconductor detectors,” Prib. Tekh. Eksp., No. 1, 57–60 (1988).Google Scholar
  24. 24.
    O. M. Grebennikova, M. G. Gornov, Yu. B. Gurov, M. A. Morokhovets, E. N. Neimark, B. P. Osipenko, V. V. Fedorov, and E. S. Yurova, “Large-area semiconductor detectors made of high-ohmic silicon produced by the neutron doping techniqe,” Prib. Tekh. Eksp., No. 3, 74–77 (1990).Google Scholar
  25. 25.
    L. S. Barabash, E. Belcarz, Yu. B. Gurov, E. I. Maltsev, L. P. Mészáros, Yu. P. Petukhov, A. G. Pimenov, and V. G. Sandukovsky, “Semiconductor microstrip detector with a resistive layer,” Nucl. Instr. Methods Phys. Res A 288, 375–378 (1990).ADSCrossRefGoogle Scholar
  26. 26.
    A. I. Amelin, S. V. Besfamil’nov, Yu. A. Budagov, M. G. Gornov, Yu. B. Gurov, A. L. Il’in, P. V. Morokhov, B. P. Osipenko, V. A. Pechkurov, V. I. Savel’ev, V. G. Sandukovskii, R. R. Shafigullin, and A. V. Shishkov, Soobshch. OIYaI No. R13-91-134, 1991 [in Russian].Google Scholar
  27. 27.
    M. G. Gornov, Yu. B. Gurov, S. V. Dovgun, and V. G. Sandukovskii, “Surface-barrier telescope detectors,” Prib. Tekh. Exper., No. 3, 55–59 (1994).Google Scholar
  28. 28.
    Yu. B. Gurov, S. L. Katulina, V. G. Sandukovsky, and J. Yurkowski, “Silicon telescope detectors,” Instrum. Exp. Tech. 48, 703–710 (2005).CrossRefGoogle Scholar
  29. 29.
    Yu. B. Gurov, C. L. Katulina, S. V. Rozov, and V. G. Sandukovsky, “Planar Si(Li) detectors with a large active volume,” Instrum. Exp. Tech. 53, 36–38 (2010).CrossRefGoogle Scholar
  30. 30.
    S. A. Golubkov, Yu. B. Gurov, K. N. Gusev, N. N. Egorov, N. N. Zamyatin, S. L. Katulina, Yu. F. Kozlov, K. A. Kon’kov, V. G. Sandukovsky, A. I. Sidorov, and A. S. Starostin, “Investigation of the internal amplification effect on planar (p+–n–n+) structures made of high-resistivity silicon,” Instrum. Exp. Tech. 47, 799–808 (2004).CrossRefGoogle Scholar
  31. 31.
    O. F. Vikhlyantsev, S. A. Golubkov, Yu. B. Gurov, K. N. Gusev, N. N. Egorov, N. I. Zamyatin, Yu. F. Kozlov, K. A. Kon’kov, V. S. Pantuev, V. G. Sandukovskii, A. I. Sidorov, A. S. Starostin, and J. Yurkowski, “Investigation of the internal amplification effect in planar p-silicon structures,” Instrum. Exp. Tech., 50, 196–201 (2007).CrossRefGoogle Scholar
  32. 32.
    M. G. Gornov, Yu. B. Gurov, M. A. Morokhovets, I. N. Voronov, O. M. Grebennikova, and T. F. Korneeva, “Feasibility of preparation of p-type conductivity germanium with the carrier concentration ≤ 3 × 1010 cm–3 by neutron doping method,” Vysokochist. Veshchestva, No. 5, 180–183 (1989).Google Scholar
  33. 33.
    M. G. Gornov, Yu. B. Gurov, B. P. Osipenko, O. I. Podkopaev, A. M. Soldatov, and J. Yurkowski, “High-purity germanium planar detectors,” Prib. Tekh. Exper., No. 4, 83–85 (1990).Google Scholar
  34. 34.
    Yu. B. Gurov, K. N. Gusev, S. L. Katulina, M. Mitura-Novak, B. Raihel, V. G. Sandukovsky, and J. Yurkowski, “Ion-implanted HPGe detectors for multilayer spectrometers of charged particles,” Instrum. Exp. Tech. 47, 598–601 (2004).CrossRefGoogle Scholar
  35. 35.
    Yu. B. Gurov, K. N. Gusev, S. L. Katulina, V. G. Sandukovsky, D. Borowicz, and J. Yurkowski, “Segmented high-purity germanium detectors,” Instrum. Exp. Tech. 50, 757–760 (2007).CrossRefGoogle Scholar
  36. 36.
    Yu. B. Gurov, V. S. Karpukhin, S. V. Rozov, V. G. Sandukovsky, D. Borowicz, J. Kwiatkowska, B. Rajchel, and J. Yurkowsky, “Passivation of HPGedetectors,” Instrum. Exp. Tech. 52, 137–140 (2009).CrossRefGoogle Scholar
  37. 37.
    V. B. Brudanin, Yu. B. Gurov, V. G. Egorov, B. Rajchel, D. Borowicz, S. V. Rozov, V. G. Sandukovsky, and J. Yurkowsky, “Large-volume HPGedetectors for rare events with a low deposited energy,” Instrum. Exp. Tech. 54, 470–472 (2011).CrossRefGoogle Scholar
  38. 38.
    M. G. Gornov, Yu. B. Gurov, P. V. Morokhov, B. P. Osipenko, A. P. Pichugin, and V. G. Sandukovskii, “Determination of a thickness of structural layers of semiconductor detectors using charged particles,” Prib. Tekh. Eksp., No. 6, 42–45 (1983).Google Scholar
  39. 39.
    M. G. Gornov, Yu. B. Gurov, S. V. Lapushkin, V. A. Pechkurov, V. G. Sandukovskii, M. V. Tel’kushev, and B. A. Chernyshev, “Energy resolution of a multilayer semiconductor spectrometer,” Instrum. Exp. Tech. 41, 639–642 (1998).Google Scholar
  40. 40.
    M. G. Gornov, Yu. B. Gurov, M. N. Ber, P. V. Morokhov, V. G. Sandukovsky, and M. V. Tel’kushev, “Selection of the shaping circuits of a multilayer semiconductor spectrometer of charged particles,” Instrum. Exp. Tech. 45, 626–630 (2002).CrossRefGoogle Scholar
  41. 41.
    Yu. B. Gurov, K. N. Gusev, V. S. Karpukhin, S. V. Lapushkin, P. V. Morokhov, V. G. Sandukovsky, and J. Yurkowski, “Calibration of a multilayer semiconductor spectrometer using α sources,” Instrum. Exp. Tech. 49, 624–628 (2006).CrossRefGoogle Scholar
  42. 42.
    K. N. Gusev, Yu. B. Gurov, S. L. Katulina, V. P. Pavlov, and V. G. Sandukovsky, “A study of the performance characteristics of silicon and germanium semiconductor detectors at temperatures below 77K,” Instrum. Exp. Tekh. 50, 202–206 (2007).CrossRefGoogle Scholar
  43. 43.
    Yu. B. Gurov, S. V. Isakov, V. S. Karpukhin, S. V. Lapushkin, V. G. Sandukovsky, and B. A. Chernyshev, “Measuring the thickness of dead layers in semiconductor detectors,” Instrum. Exp. Tech. 51, 59–63 (2008).CrossRefGoogle Scholar
  44. 44.
    M. G. Gornov, Yu. B. Gurov, A. S. Lukin, P. V. Morokhov, V. A. Pechkurov, A. P. Pichugin, V. I. Saveliev, R. R. Shafigullin, F. M. Sergeev, A. A. Khomutov, K. O. Oganesyan, B. P. Osipenko, and V. G. Sandukovsky, “Two-arm semiconductor spectrometer of charged particles for the investigation of absorption of stopped negative pions by nucleus,” Nucl. Instrum. Methods Phys. Res. A 225, 42–48 (1984).CrossRefGoogle Scholar
  45. 45.
    I. I. Gaisak, M. G. Gornov, Yu. B. Gurov, S. I. Merzlyakov, K. O. Oganesyan, B. P. Osipenko, E. A. Pasyuk, S. Yu. Porokhovoi, A. I. Rudenko, A. A. Khomutov, and A. V. Shishkov, “A semiconductor spectrometer for beams of low-energy positive pions,” Instrum. Exp. Tech., 31, 22–24 (1988).Google Scholar
  46. 46.
    Yu. K. Akimov, I. I. Gaisak, M. I. Gostkin, Yu. B. Gurov, S. I. Merzlyakov, A. G. Molokanov, K. O. Oganesyan, E. A. Pasyuk, and S. Yu. Porokhovoi, Soobshch. OIYaI No. 13-89-93, 1989 [in Russian].Google Scholar
  47. 47.
    G. F. Bin’ko, V. N. Grebenev, Yu. B. Gurov, Yu.P.Dobretsov, V. P. Dzhelepov, V. G. Zinov, V. G. Kirillov-Ugryumov, A. A. Maloletnev, A. L. Mikaelyan, A. P. Pichugin, V. V. Fil’chenkov, and N. N. Khal’ko, “Setup for studying muon stops in the wall-less gas target,” Prib. Tekh. Eksp., No. 4, 58–61 (1990).Google Scholar
  48. 48.
    A. I. Amelin, M. N. Ber, M. G. Gornov, Yu. B. Gurov, S. V. Lapushkin, P. V. Morokhov, V. A. Pechkurov, R. R. Shafigullin, T. D. Shchurenkova, and A. Yu. Fateev, “Semiconductor spectrometer for lowenergy charged pions,” Prib. Tekh. Eksp., No. 1, 69–79 (1993).Google Scholar
  49. 49.
    B. A. Chernyshev, S. V. Dovgun, M. G. Gornov, Yu. B. Gurov, V. N. Grebenev, S. L. Katulina, V. G. Sandukovsky, and R. R. Shafigullin, “Search for deeply bound pionic atoms with high-purity germanium tagging spectrometer,” Soobshch. OIYaI No. E13-94-198, 1994.Google Scholar
  50. 50.
    M. G. Gornov, V. N. Grebenev, Yu. B. Gurov, H.Calen, B. A. Morozov, V. G. Sandukovsky, B. A. Chernyshev, B. Höistad, S. N. Khrapov, and R. R. Shafigullin, “A charged particle spectrometer for small-angle experiments,” Instrum. Exp. Tech. 42. 493–499 (1999).Google Scholar
  51. 51.
    M. G. Gornov, Yu. B. Gurov, S. V. Lapushkin, P. V. Morokhov, V. A. Pechkurov, E. A. Pasyuk, B. A. Chernyshev, and V. G. Sandukovsky “Multilayer semiconductor spectrometer for studying light neutron-rich nuclei,” Nucl. Inst. Methods Phys. Res. A 446, 461–468 (2000).ADSCrossRefGoogle Scholar
  52. 52.
    Chr. Bargholtz, L. Geren, V. N. Grebenev, Yu. B. Gurov, V. S. Karpukhin, I. V. Laukhin, K. Lindberg, V. G. Sandukovsky, P.-E. Tegnér, B. A. Chernyshev, and R. R. Shafigullin, “A spectrometer for seeking exotic states of pionic atoms of xenon,” Instrum. Exp. Tech. 49, 306–313 (2006).CrossRefGoogle Scholar
  53. 53.
    Chr. Bargholtz, L. Gerén, V. N. Grebenev, Yu. B. Gurov, V. S. Karpukhin, I. V. Laukhin, B. V. Martem’yanov, V. A. Matveev, K. Lindberg, V. S. Sopov, P. -E. Tegnér, B. A. Chernyshev, R. R. Shafigullin, and I. Zartova, “Tagging of η mesons using the pd → 3Heη reaction near threshold,” Instrum. Exp. Tech. 49, 461–467 (2006).CrossRefGoogle Scholar
  54. 54.
    M. G. Gornov, Yu. B. Gurov, V. P. Koptev, P. V. Morokhov, K. O. Oganesyan, B. P. Osipenko, V.A. Pechkurov, V. I. Savel’ev, F. M. Sergeev, A. A. Khomutov, B. A. Chernyshev, R. R. Shafigullin, and A. V. Shishkov, “Detection of superheavy hydrogen isotopes in the reaction of π−-meson absorption by 9Be nuclei,” Pis’ma Zh. Eksp. Teor. Fiz. 45, 205–208 (1987).Google Scholar
  55. 55.
    A. I. Amelin, M. G. Gornov, Yu. B. Gurov, A. L. Il’in, P. V. Morokhov, V. A. Pechkurov, V. I. Savel’ev, F. M. Sergeev, S. A. Smirnov, B. A. Chernyshev, R. R. Shafigullin, and A. V. Shishkov, “10Li formation in absorption of stopped negative pions in 11B nuclei,” Yad.Fiz. 52, 1231–1233 (1990) [Sov. J. Nucl. Phys. 52, 782–783 (1990)].Google Scholar
  56. 56.
    Yu. B. Gurov, D. V. Aleshkin, M. N. Behr, B. A. Chernyshev, S. V. Lapushkin, P. V. Morokhov, V. A. Pechkurov, N. O. Poroshin, V. G. Sandukovsky, and M. V. Telkushev, “Spectroscopy of superheavy hydrogen isotopes 4H and 5H,” Eur. Phys. J. A 24, 231–236 (2005).ADSCrossRefGoogle Scholar
  57. 57.
    B. A. Chernyshev, Yu. B. Gurov, L. Yu. Korotkova, S. V. Lapushkin, R. V. Pritula, and V. G. Sandukovsky, “Study of the level structure of the lithium isotope 10Li in stopped pion absorption,” Intern. J. Mod. Phys. E 24, 1550004 (2015).ADSCrossRefGoogle Scholar
  58. 58.
    A. I. Amelin, M. N. Behr, B. A. Chernyshev, M. G. Gornov, Yu. B. Gurov, S. V. Lapushkin, P. V. Morokhov, V. A. Pechkurov, R. R. Shafigullin, T. D. Shurenkova, V. P. Koptev, M. G. Ryskin, R. A. Eramzhian, and K. O. Oganesian, “Evidence for virtual Δ++ knock-out from 9Be by 1GeV protons,” Phys. Lett. B 337, 261–265 (1994).ADSCrossRefGoogle Scholar
  59. 59.
    M. Andersson, Chr. Bargholtz, B. Chernyshev, L. Geren, M. Gornov, V. Grebenev, Y. Gurov, B. Höistad, V. Sandukovsky, R. Shafigullin, P.-E. Tegnér, and K. Wilhelmsen Rolander, “The observation of deeply bound pionic states of xenon produced in the d+Xenat → Xeπ-bound + 3He reaction,” Nucl. Phys. A 721, 846–848 (2003).ADSCrossRefGoogle Scholar
  60. 60.
    Chr. Bargholtz, B. A. Chernyshev, L. Gerén, V. N. Grebenev, Yu. B. Gurov, B. Höistad, I. V. Laukhin, V. G. Sandukovsky, R. R. Shafigullin, and P.-E. Tegnér, “A search for deeply bound pionic states of xenon produced in the 136Xe(d,3He)135Xeπ-bound reaction,” Phys. At. Nucl. 68, 488–490 (2005).CrossRefGoogle Scholar
  61. 61.
    M. G. Gornov, Yu. B. Gurov, V. P. Koptev, S. P. Kruglov, A. S. Lukin, M. M. Makarov, K. O. Oganesyan, B. P. Osipenko, V. A. Pechkurov, A. I. Pichugin, V. I. Savel’ev, F. M. Sergeev, A. A. Khomutov, and R. R. Shafigullin, “Investigation of the emission of correlated charged particles due to absorption of stopped π–-mesons in silicon,” JETP Lett. 40, 924–928(1984).ADSGoogle Scholar
  62. 62.
    M. G. Gornov, Yu. B. Gurov, A. I. Il’in, S. G. Mashnik, P. V. Morokhov, V. A. Pechkurov, M. A. Polikarpov, V. I. Savel’ev, F. M. Sergeev, S. A. Smirnov, A. A. Khomutov, B. A. Chernyshev, and A. V. Shishkov, “Emission of protons on absorption of stopped negative pions by Be, C, Si, Cu, and Ge nuclei,” Yad. Fiz. 47, 959–967 (1988).Google Scholar
  63. 63.
    G. F. Bin’ko, V. N. Grebenev, Yu. B. Gurov, Yu. P. Dobretsov, V. P. Dzhelepov, V. G. Zinov, V. G. Kirillov-Ugryumov, A. A. Maloletnev, A. L. Mikaelyan, A. P. Pichugin, V. V. Fil’chenkov, and N. N. Khal’ko, “Measurement of the residual polarization of negative muons in gaseous deuterium at a pressure of 10 atm,” JETP Lett. 49, 544–548 (1989).ADSGoogle Scholar
  64. 64.
    G. F. Bin’ko, V. N. Grebenev, Yu. B. Gurov, Yu. P. Dobretsov, V. G. Kirillov-Ugryumov, A. A. Maloletnev, A. L. Mikaelyan, and A. P. Pichugin, “Formation of the muonic HF molecule during the stopping of negative muons in a neon-hydrogen mixture,” JETP Lett. 57, 753–757 (1993).ADSGoogle Scholar
  65. 65.
    Yu. K. Akimov, A. I. Kalinin, V. F. Kushniruk, and H. Yungklaussen, Semiconductor Detectors for Nuclear Particles and Their Application (Atomizdat, Moscow, 1967) [in Russian].Google Scholar
  66. 66.
    O. N. Fedoseeva, L. S. Gatsenko, O. V. Zakharchuk, B. A. Nikitin, E. P. Tutov, and N. B. Tyurina, Silicon Detectors of Ionizing Radiations (Atomizdat, Moscow, 1975) [in Russian].Google Scholar
  67. 67.
    S. A. Azimov, R. A. Muminov, S. Kh. Shamirzaev, and A. Ya. Yafasov, Silicon-Lithium Detectors of Nuclear Radiations (FAN, Tashkent, 1981) [in Russian].Google Scholar
  68. 68.
    P. A. Tove, “The role of contacts to nuclear radiation detectors,” Nucl. Instr. Methods Phys. Res. 133, 445–452 (1976).ADSCrossRefGoogle Scholar
  69. 69.
    Yu. K. Akimov, O. V. Ignat’ev, A. I. Kalinin, and V. F. Kushniruk, Semiconductor Detectors in Experimental Physics (Energoatomizdat, Moscow, 1989).Google Scholar
  70. 70.
    J. B. England and V. W. Hammer, “A new type of noninjecting back contact for totally depleted silicon surface barrier detectors,” Nucl. Instr. Methods Phys. Res. 96, 81–86 (1971).ADSCrossRefGoogle Scholar
  71. 71.
    J. B. England, “A note on non-injecting back contacts for high resistivity silicon surface barrier detectors,” Nucl. Instr. Methods Phys. Res. A 226, 564–565 (1984).ADSCrossRefGoogle Scholar
  72. 72.
    J. T. Walton, H. A. Sommer, D. E. Greiner, and F. S. Bieser, “Thin window Si(Li) detectors for the ISEE-C telescope,” IEEE Trans. Nucl. Sci. NS-25, 391–394 (1978).Google Scholar
  73. 73.
    S. J. Pearton and A. A. Williams, “Ultra-thin laseraided doped Li contacts on high-purity germanium nuclear radiation detectors,” Nucl. Instr. Methods Phys. Res. 188, 261–263 (1981).ADSCrossRefGoogle Scholar
  74. 74.
    G. Riepe and D. Protic, “High-purity germanium detectors with both contacts made by ion-implantation,” Nucl. Instr. Methods Phys. Res. 165, 31–34 (1979).ADSCrossRefGoogle Scholar
  75. 75.
    U. M. Gibson, F. U. Martin, A. Kh. Klark, S. Nel’son, and R. Stensor, “Electrical and physical measurements on silicon doped by the ion method under conditions with and without channeling. Lithium insertion,” in Ion Implantation of Semiconductors, Ed. by S.S. Vavilov and V.L. Gusev (Mir, Moscow, 1971), pp. 377–380.Google Scholar
  76. 76.
    B. I. Boltaks, Diffusion in Semiconductors (FM, Moscow, 1961).Google Scholar
  77. 77.
    E. S. Fal’kevich, E. O. Pul’ner, I. F. Chervonnyi, et al., Techique of Processing of Semiconductor Silicon (Metallurgiya, Moscow, 1992).Google Scholar
  78. 78.
    L. S. Smirnov, S. I. Solov’ev, V. F. Stas’, and V. A. Kharchenko, Semiconductor Doping by Nuclear Reaction Method, (Nauka, Novosibirsk, 1981) [in Russian].Google Scholar
  79. 79.
    V. S. Vavilov and N. A. Ukhin, Radiation Effects in Semiconductors and Semiconductor Apparatuses (Springer US, 1995).CrossRefGoogle Scholar
  80. 80.
    N. F. Kovtanyuk and Yu. A. Kontsevoi, Measuring Parameters of Semiconducting Materials (Metallurgiya, Moscow, 1970).Google Scholar
  81. 81.
    R. T. Young, J. W. Cleland, R. F. Wood, and M. M. Abraham, “Radiation damage in neutron transmutation doped silicon: Electrical property studies,” J. Appl. Phys. 49, 4752–4760 (1978).ADSCrossRefGoogle Scholar
  82. 82.
    C. Kim, H. W. Kraner, D. Itoh, K. Husimi, S. Ohkawa, and F. Shiraishi, “Neutron transmutation doped silicon detectors,” Nucl. Instr. Methods Phys. Res. 196, 143–148 (1982).ADSCrossRefGoogle Scholar
  83. 83.
    L. Bischoff, “Use of neutron-doped silicon in semiconductor detectors,” Sov. Phys. Semicond. 19, 1305–1307 (1985).Google Scholar
  84. 84.
    E. M. Verbitskaya, P. M. Grinshtein, R. I. Gutchetl’, V. K. Eremin, A. M. Ivanov, and M. A. Morokhovets, “Detectors of short-range particle based on neutrontransmutation-doped silicon,” Prib. Tekh. Eksp., 30, 68–71 (1987).Google Scholar
  85. 85.
    E. G. Yurova, V. V. Fedorov, and V. N. Nazarkin, “Metrological features of estimating the single-crystal silicon inhomogeneity by the dissipation resistance method,” Elektron. Tekhn. (Ser. Materialy), No. 1, 76–78 (1985) [In Russian].Google Scholar
  86. 86.
    J. Kemmer, “Fabrication of low noise silicon radiation detectors by the planar process,” Nucl. Instr. Methods Phys. Res. A 169, 499–502 (1980).ADSCrossRefGoogle Scholar
  87. 87.
    I. N. Voronov, I. M. Gres’kov, P. M. Grinshtein, R. I. Guchetl’, M. A. Morokhovets, N. A. Sobolev, A. A. Stuk, V. A. Kharchenko, V. E. Chelnokov, and E. I. Shek, “Influence of annealing medium on properties of radiation-doped silicon,” Pis’ma Zh. Tekh. Fiz. 10, 645–649 (1984).Google Scholar
  88. 88.
    W. L. Hansen, “High-purity germanium crystal growing,” Nucl. Instr. Methods Phys. Res. 94, 377–380 (1971).ADSCrossRefGoogle Scholar
  89. 89.
    E. E. Haller, “Detector materials: Germanium and silicon,” IEEE Trans. Nucl. Sci. NS–29, 1109–1118 (1982).Google Scholar
  90. 90.
    J. Llacer, “Planar and coaxial high-purity germanium radiation detectors,” Nucl. Instr. Methods Phys. Res. 98, 259–268 (1972).ADSCrossRefGoogle Scholar
  91. 91.
    Ts. Vylov, B. P. Osipenko, V. G. Sandukovskii, and J. Yurkowski, Soobshch. OIYaI No. 13-85-677, 1985 [in Russian].Google Scholar
  92. 92.
    Catalog EG&G ORTEC, 1986–1987.Google Scholar
  93. 93.
    J. Mayer, L. Eriksson, and J. Davis, Ion Implantation in Semiconductors. Silicon and germanium (Academic, New York, 1970).Google Scholar
  94. 94.
    R. Eisberg, M. Makino, R. Cole, C. N. Waddell, M. Baker, J. J. Jarmer, D. M. Lee, and P. Thompson, “Design and performance of an 8-cm thick intrinsic germanium detector telescope,” Nucl. Instr. Methods Phys. Res. 146, 487–495 (1977).ADSCrossRefGoogle Scholar
  95. 95.
    Ts. Vylov, B. P. Osipenko, and V. M. Chumin, “Precise spectrometry of radioactive nuclide emissions using semiconductor detectors,” Fiz. Elem. Chastits At. Yadra 9, 1350–1459 (1978) [Sov. J. Part. Nucl. 9, 530 (1978)].Google Scholar
  96. 96.
    F. S. Goulding, “Semiconductor detectors for nuclear spectrometry,” Nucl. Instr. Methods Phys. Res. 43, 1–54 (1966).ADSCrossRefGoogle Scholar
  97. 97.
    E. Elad, C. N. Inskeep, R. A. Sareen, and P. Nestor, “Dead layers in charged-particle detectors,” IEEE Trans. Nucl. Sci NS–20, 534–544 (1973).Google Scholar
  98. 98.
    V. P. Selyutin, L. S. Kridiner, and L. S. Gatsenko, “Measuring the sensitive region thickness of silicon detectors,” Prib. Tekh. Eksp., No. 6, 54–56 (1972).Google Scholar
  99. 99.
    D. Protić and G. Riepe, “Dead layers on semiconductor detectors for charged particle spectroscopy,” Nucl. Instr. Methods Phys. Res. 101, 55–60 (1972).ADSCrossRefGoogle Scholar
  100. 100.
    R. G. Musket and W. Bauer, “Determination of gold layer and dead layer thickness for Si-Li detectors,” Nucl. Instr. Methods Phys. Res. 109, 593–595 (1973).ADSCrossRefGoogle Scholar
  101. 101.
    S. A. Azimov, R. A. Muminov, B. B. Baizakov, V. D. Karpov, S. A. Radzhapov, D. K. Khasanov, and A. Ya. Yafasov, “The large-area semiconductor detectors of beta-radiation,” At. Energ. 60, 144–146 (1986).CrossRefGoogle Scholar
  102. 102.
    K. Hatch, “On the design of filters for pulse-height and time analysis,” IEEE Trans. Nucl. Sci. NS-15, 303–314 (1968).Google Scholar
  103. 103.
    S. A. Baldin, N. A. Vartanov, Yu. V. Erykhailov, L. M. Ioannesyants, V. V. Matveev, and Yu. P. Sel’dyakov, Applied Spectrometry with Semiconductor Detectors (Atomizdat, Moscow, 1974) [In Russian].Google Scholar
  104. 104.
    F. S. Goulding and D. A. Landls, “Signal processing for semiconductor detectors,” IEEE Trans. Nucl. Sci. NS-29, 1125–1141 (1982).Google Scholar
  105. 105.
    I. I. Gaisak, M. G. Gornov, Yu. B. Gurov, A. S. Lukin, P. V. Morokhov, K. O. Oganesyan, B. P. Osipenko, E. A. Pasyuk, V. A. Pechkurov, B. S. Rozov, V. I. Savel’ev, and A. A. Khomutov, “Automated electronic system of a multilayer semiconductor spectrometer,” Prib. Tekh. Eksp., No. 5, 19–23 (1983).Google Scholar
  106. 106.
    A. I. Amelin, M. N. Ber, S. V. Besfamil’nov, M. G. Gornov, Yu. B. Gurov, A. A. Zhurin, A. L. Il’in, V. P. Koptev, S. V. Lapushkin, P. V. Morokhov, V. A. Pechkurov, M. G. Ryskin, and V. I. Savel’ev, Preprint No. 1748, LIYaF (Leningrad Nuclear Physics Institute, 1991) [In Russian].Google Scholar
  107. 107.
    V. A. Volchenkov, V. A. Gordeev, V. A. Eliseev, E. M. Ivanov, V. P. Koptev, S. M. Mikirtych’yants, G. A. Ryabov, and G. V. Shcherbakov, Preprint No. 612, LIYaF (Leningrad Nuclear Physics Institute, 1980) [In Russian].Google Scholar
  108. 108.
    K. H. Wilcox, R. B. Weisenmiller, G. J. Wozniak, N. A. Jelley, D. Ashery, and J. Cerny, “The (9Be, 8B) reaction and the unbound nuclide 10Li,” Phys. Lett. B 59, 142–144 (1975).ADSCrossRefGoogle Scholar
  109. 109.
    A. Gillibert, L. Bianchi, A. Cunsolo, B. Fernandez, A. Foti, J. Gastebois, Ch. Gregoire, W. Mittig, A. Peghaire, Y. Schutz, and C. Stephan, “Mass measurement of light neutron-rich fragmentation products,” Phys. Lett. B 176, 317–321 (1986).ADSCrossRefGoogle Scholar
  110. 110.
    F. C. Barker and G. T. Hickey, “Ground-state configurations of 10Li and 11Li,” J. Phys. G 3, L23–L32 (1977).ADSCrossRefGoogle Scholar
  111. 111.
    S. N. Abramovich, B. Ya. Guzhovskii, A. V. Ershov, and L. M. Lazarev, “Analysis of anomalies in the excitation function for the reaction 7Li(t,p)9Li,” Sov. J. Nucl. Phys. 46, 269–272 (1987).Google Scholar
  112. 112.
    D. R. Tilley, K. H. Kelley, J. L. Godwin, D. J. Millener, J. F. Purcell, C. G. Sheu, and H. R. Weller, “Energy levels of light nuclei A= 8, 9, 10,” Nucl. Phys. A 745, 105 (2004).ADSCrossRefGoogle Scholar
  113. 113.
    U. Sennhauser, L. Felawka, T. Kozlowski, H. K. Walter, F. W. Schlepuetz, R. Engfer, E. A. Hermes, P. Heusi, H. P. Isaak, H. S. Pruys, A. Zglinski, and W. H. A. Hesselink, “Observation of particle unstable 4H in pion absorption in 7Li,” Phys. Lett. B 103, 409–412 (1981).ADSCrossRefGoogle Scholar
  114. 114.
    R. Franke, K. Kochskämper, B. Steinheuer, and K. Wingender, W. Von Witsch, and H. Machner, “Search for highly excited states in light nuclei with three-body reaction,” Nucl. Phys. A 433, 351–368 (1985).ADSCrossRefGoogle Scholar
  115. 115.
    F. Ajzenberg-Selove, “Energy levels of light nuclei A = 5–10,” Nucl. Phys. A 490, 1–225 (1988).ADSCrossRefGoogle Scholar
  116. 116.
    A. M. Gorbatov, A. V. Bursak, A. M. Kalinin, E.A. Kolganova, P. V. Komarov, Yu. I. Krylov, P. V. Nikishov, Yu. E. Penionzhkevich, and V. L. Skopich, Preprint No. R4-87-752, OIYaI (Joint Institute for Nuclear Research, Dubna, 1987) [In Russian].Google Scholar
  117. 117.
    LAMPF Users Handbook. Sec. 6A (LAMPF, Los Alamos,1990).Google Scholar
  118. 118.
    P. Santi, J. J. Kolata, V. Guimaraes, D. Peterson, R.White-Stevens, E. Rischette, D. Bazin, B. M. Sherrill, A. Navin, P. A. DeYoung, P. L. Jolivette, G. F. Peaslee, and R. T. Guray, “Structure of the 10Li nucleus investigated via the 9Li(d,p)10Li reaction,” Phys. Rev. C 67, 024606 (2003).ADSCrossRefGoogle Scholar
  119. 119.
    H. B. Jeppesen, A. M. Moro, U. C. Bergmann, M. J. G. Borge, J. Cederkäll, L. M. Fraile, H. O.U. Fynbo, J. Gómez-Camacho, H.T. Johansson, M. Meister, T. Nilsson, K. Riisager, M. Turrión, and F. Wenander, “Study of 10Li via the 9Li(2H, p) reaction at REX-ISOLDE,” Phys. Lett. B 642, 449–454 (2006).ADSCrossRefGoogle Scholar
  120. 120.
    H. Simon, M. Meister, T. Aumann, M. J. G. Borge, L. V. Chulkov, D. U. Pramanik, Th. W. Elze, H. Emling, C. Forssén, H. Geissel, B. Jonson, Y. Leifels, O. Tengblad, and M. V. Zhukov, “Systematic investigation of the drip-line nuclei 11Li and 14Be and their unbound subsystems 10Li and 13Be,” Nucl. Phys. A 791, 287–302 (2007).ADSCrossRefGoogle Scholar
  121. 121.
    A. V. Belozyorov, C. Borcea, Z. Dlouhy, A. M. Kalinin, R. Kalpakchieva, Hoai Chau Nguyen, Yu.Ts. Oganessian, and Yu. E. Penionzhkevich “Search for 4H, 5H and 6H nuclei in the 11B-induced reaction on 9Be,” Nucl. Phys. A 460, 352–360 (1986).ADSCrossRefGoogle Scholar
  122. 122.
    D. V. Aleksandrov, E. Yu. Nikol’skii, B. G. Novatskii, D. N. Stepanov, V. Bur’yan, V. Kroga, and Ya. Novak, “New measurements of the mass of isotope 4H in reactions with radioactive 6He beam and 6Li ions,” JETP Lett. 62, 18–22 (1995).ADSGoogle Scholar
  123. 123.
    A. M. Lane and R. G. Thomas, “Theory of nuclear reactions with low energy,” Rev. Mod. Phys. 30, 201–257 (1958).CrossRefGoogle Scholar
  124. 124.
    M. Meister, L. V. Chulkov, H. Simon, T. Aumann, M. J. G. Borge, Th. W. Elze, H. Emling, H. Geissel, M. Hellstrom, B. Jonson, G. Nyman, V. Pribora, A. Richter, and O. Tengblad, “Searching for the 5H resonance in the t+n+n system,” Nucl. Phys. A 723, 13–31 (2003).ADSCrossRefGoogle Scholar
  125. 125.
    S. I. Sidorchuk, D. D. Bogdanov, A. S. Fomichev, M. S. Golovkov, Yu. Ts. Oganessian, A. M. Rodin, R. S. Slepnev, S. V. Stepantsov, G. M. Ter-Akopian, R. Wolski, A. A. Korsheninnikov, E. Yu. Nikolskii, A. A. Yukhimchuk, and Yu. I. Vinogradov, “Experimental study of 4H in the reactions 2H(t,p) and 3H(t,d),” Phys. Lett. B 594, 54–60 (2004).ADSCrossRefGoogle Scholar
  126. 126.
    E. F. Strokovsky, F. A. Gareev, and Yu. L. Ratis, “Delta-isobar excitations of atomic nuclei in chargeexchange reactions,” Fiz. Elem. Chastits At. Yadra 24, 603–682 (1993) [Phys. Part. Nucl. 24, 255 (1993)].Google Scholar
  127. 127.
    K. N. Mukhin and O. O. Patarakin, “Δ-isobar in nuclei (review of experimental data),” Phys.-Usp. 38, 803–844 (1995).ADSCrossRefGoogle Scholar
  128. 128.
    H. Primakoff and S. P. Rosen, “Nuclear double-beta decay and a new limit on lepton nonconservation,” Phys. Rev. 184, 1925–1933 (1969).ADSCrossRefGoogle Scholar
  129. 129.
    A. K. Kerman and L. S. Kisslinger, “High-energy backward elastic proton-deuteron scattering and baryon resonances,” Phys. Rev. 180, 1483–1489 (1969).ADSCrossRefGoogle Scholar
  130. 130.
    A. M. Green, “Nucleon resonance in nuclei,” Rep. Prog. Phys. 39, 1109–1190 (1976).ADSCrossRefGoogle Scholar
  131. 131.
    H. J. Weber and H. Arenhovel, “Isobar configurations in nuclei,” Phys. Rep. 36, 277–348 (1978).ADSCrossRefGoogle Scholar
  132. 132.
    R. Dymarz and F. C. Khanna, “The Δ-isobars in the deuteron,” Nucl. Phys. A 516, 549–565 (1990).ADSCrossRefGoogle Scholar
  133. 133.
    R. Cenni, F. Conte, and U. Lorenzini, “Δ-component in the nuclear ground state,” Phys. Rev. C 39, 1588–1598 (1989).ADSCrossRefGoogle Scholar
  134. 134.
    H. J. Lipkin and T.-S. H. Lee, “Photo and electroproduction of Δ as test of deltas in nuclei,” Phys. Lett. B 183, 22–26 (1987).ADSCrossRefGoogle Scholar
  135. 135.
    R. G. Milner and T. W. Donnely, “Measurement of charged pion asymmetries in scattering of polarized electrons from polarized 3He,” Phys. Rev. C 37, 870–872 (1988).ADSCrossRefGoogle Scholar
  136. 136.
    M. A. Moinester and H. J. Lipkin, “Δ-components in the 3He ground state,” Phys. Lett. B 277, 221–226 (1992).ADSCrossRefGoogle Scholar
  137. 137.
    G. D. Westfall, R. G. Sextro, A. M. Poskanzer, A.M.Zebelman, G. W. Butler, and E. K. Hyde, “Energy spectra of nuclear fragments produced by high energy protons,” Phys. Rev. C 17, 1368–1381 (1978).ADSCrossRefGoogle Scholar
  138. 138.
    D. E. Greiner, P. J. Lindstrom, H. H. Heckman, B. Cork, and F. S. Bieser, “Momentum distributions of isotopes produced by fragmentation of relativistic 12C and 16O projectiles,” Phys. Rev. Lett. 35, 152–155 (1975).ADSCrossRefGoogle Scholar
  139. 139.
    V. C. Nikolaev, “Electron capture and loss by fast ioms in atomic collisions,” Sov. Phys. Usp. 8, 269–294 (1965).ADSCrossRefGoogle Scholar
  140. 140.
    S. K. Allison, “Experimental results on charge-changing collisions of hydrogen and helium atoms and ions at kinetic energies above 0.2 keV,” Rev. Mod. Phys. 30, 1137–1168 (1958).ADSCrossRefGoogle Scholar
  141. 141.
    R. E. L. Green, R. G. Korteling, J. M. D’Auria, K. P. Jackson, and R. L. Helmer, “Light fragment spectra to upper kinematic limits for 300 MeV proton reactions with Be and Ag,” Phys. Rev. C 35, 1341–1352 (1987).ADSCrossRefGoogle Scholar
  142. 142.
    C. T. A. M. De Laat, A. Taal, J. Konijn, and P. David, H. Hänscheid, F. Risse, Ch. Rösel, W. Schrieder, and C. Petitjean, “A study of the strong interaction effects on pionic 3d and 4f levels in 181Ta, natRe, natPt, 197Au, 208Pb, 209Bi and 237Np,” Nucl. Phys. A 523, 453–487 (1991).ADSCrossRefGoogle Scholar
  143. 143.
    S. Hirenzaki, T. Kajino, K.-I. Kubo, H. Toki, and I. Tanihata, “Pionic atoms of unstable nuclei,” Phys. Lett. B 194, 20–24 (1987).ADSCrossRefGoogle Scholar
  144. 144.
    H. Toki, S. Hirenzaki, and T. Yamazaki, “Sensitivity of deeply bound pionic atoms on the neutron skin,” Phys. Lett. B 249, 391–395 (1990).ADSCrossRefGoogle Scholar
  145. 145.
    T. Waas, R. Brockmann, and W. Weise, “Deeply bound pionic states and the effective pion mass in nuclear systems,” Phys. Lett. B 405, 215–218 (1997).ADSCrossRefGoogle Scholar
  146. 146.
    T. Yamazaki, R. S. Hayano, K. Itahashi, K. Oyama, A. Gillitzer, H. Gilg, M. Knülle, M. Münch, P. Kienle, W. Schott, H. Geissel, N. Iwasa, and G. Münzenberg, “Discovery of deeply bound π–states in the 208Pb(d,3He) reaction,” Z. Phys. A 355, 219–224 (1996).ADSGoogle Scholar
  147. 147.
    A. Gillitzer, H. Geissel, H. Gilg, A. Gillitzer, R. S. Hayano, S. Hirenzaki, K. Itahashia, M. Iwasaki, P. Kienle, M. Münch, G. Münzenberg, K. Suzuki, D. Tomono, and H. Weick “Observation of wellresolved 1s and 2p π–states in Pb by high resolution (d,3He) Spectroscopy,” Nucl. Phys. A 663–664, 206c–209c (2000).CrossRefADSGoogle Scholar
  148. 148.
    Y. Umemoto, S. Hirenzaki, K. Kume, and H. Toki, “Formation of deeply bound 1s pionic states of intermediate mass nuclei in (d,3He) reactions,” Prog. Theor. Phys. 103, 337–350 (2000).ADSCrossRefGoogle Scholar
  149. 149.
    C. Ekström, E. Fransén, K. Gajewski, D. Hallin, B. Hemryd, H. Herr, P. Jahnke, G. Janson, P. Lidbjörk, G. Norman, D. Reistad, R. Wedberg, and L. Westerberg, “The CELSIUS project,” Phys. Scr. 22, 256–268 (1988).CrossRefGoogle Scholar
  150. 150.
    H. Calén, et al. (CELSIUS-WASA Collab.), “Detector setup for a storage ring with an internal target,” Nucl. Instr. Methods Phys. Res A 379, 57–75 (1996).ADSCrossRefGoogle Scholar
  151. 151.
    F. Ajzenberg-Selove, “Energy levels of light nuclei A = 13–15,” Nucl. Phys. A 268, 1–204 (1976).ADSCrossRefGoogle Scholar
  152. 152.
    N. I. Kostanashvili, G. N. Lebedevich, D. S. Nabichvrishvili, and G. I. Kharashvili, “Slow π-meson production in interactions of high-energy particles with nuclei,” Yad. Fiz. 16, 983–988 (1972) [Sov. J. Nucl. Phys. 16, 542 (1973)].Google Scholar
  153. 153.
    J. P. Albanese, J. Arvieux, E. T. Boschitz, R. Corfu, J. P. Egger, P. Gretillat, C. H. Q. Ingram, C. Lunke, E. Pedroni, C. Perrin, J. Piffaretti, L. Pflug, E. Schwarz, C. Wiedner, and J. Zichy, “The SIN high resolution pion channel and spectrometer,” Nucl. Instr. Methods Phys. Res. 158, 363–370 (1979).ADSCrossRefGoogle Scholar
  154. 154.
    C. J. Oram, J. B. Warren, G. M. Marshall, and J. Doornbos, “Commissioning of new low energy π–μ channel at TRIUMF,” Nucl. Instr. Methods Phys. Res. 179, 95–103 (1981).ADSCrossRefGoogle Scholar
  155. 155.
    L. Bimbot, V. Bellini, M. Bolore, X. Charlot, C. Guet, J. M. Hisleur, J. C. Jourdain, P. Kristiansson, G. Lanzano, B. Million, A. Palmeri, F. Reidea, N. Willis, “Inclusive (p, π±) reactions at 201 and 180MeV,” Nucl. Phys. A 440, 636–646 (1985).ADSCrossRefGoogle Scholar
  156. 156.
    A. Palmeri, S. Aiello, A. Badalà, R. Barbera, G. S. Pappalardo, L. Bimbot, F. Reide, N. Willis, and H. Oeschler, “Charged pions from the isotopes 58,64Ni by 201MeV protons,” Phys. Rev. C 40, 1081–1084 (1989).ADSCrossRefGoogle Scholar
  157. 157.
    S. G. Mashnik, “A role of nuclear mechanisms in production of kinematically forbidden particles. Physics of atomic nucleus,” in Proc. 18th Winter School of LIYaF (Leningrad Inst. of Nucl. Phys.) (Leningrad, 1988) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. B. Gurov
    • 1
    • 2
  • S. V. Lapushkin
    • 2
  • V. G. Sandukovsky
    • 1
  • B. A. Chernyshev
    • 2
  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  2. 2.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations